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Abstfact

Problems arising when kinematically redundant manipula-
tors are controlled using the Jacobian pseudoinverse are
related 1o the nonintegrability of the standard pseudoin-
verse. This article presents a-class of generalized inverses
that have the property of being integrable within any sim-
ply connected, nonsingular region of the work space. Inte-
grability is obtained by deriving the equations that
describe an externally imposed motion, with the hypothe-
sis that a compliance function is associated with each
degree of freedom of the manipulator. The result is a
weighted pseudoinverse containing a term that accounts
for the nonlinear features of the forward kinematics. The
relation of this integrable weighted pseudoinverse to the
standard Moore-Penrose and other weighted pseudo-
inverses is discussed.

1. Introduction

It is widely recognized that a manipulator system
with more controllable degrees of freedom than the
minimum number required to describe spatial posi-
tioning tasks can offer significant advantages. For
example, dextrous manipulation by robot hands or
multiple coordinated arms appears to require a large
number of degrees of freedom. Specifying the opera-
tion of these systems to perform a task with fewer
degrees of freedom is an underdetermined, or “"ill-
posed,”” problem. Solutions based on the use of a
generalized inverse of the manipulator’s Jacobian
have been proposed by several investigators (Whit-
ney 1969: Liegeois 1977: Hollerbach and Suh 1985).
However, Klein and Huang (1983) pointed out that
this kind of control can drive the system to unpre-
dictable configurations, a phenomenon that they
related to the nonintegrability of a differential equa-
tion associated with the Jacobian pseudoinverse. In
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Kinematic Redundancy via
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this article we show how this problem arises and
present a new solution: a class of integrable
weighted pseudoinverses for redundant manipulator
systems. These solutions have the form of compli-
ance-weighted pseudoinverses of the manipulator
Jacobian. They are integrable within any simply con-
nected region' of the work space in which the
weighted pseudoinverses are not singular. We also
show how these integrable solutions are related to
more common generalized inverses such as the
Moore-Penrose (MP) pseudoinverse.

2. Redundant Manipulators

The term kinematic redundancy is commonly used
to indicate an excess of directly controlled degrees
of freedom with respect to the number of parameters
specified in a positioning task. Here, we will
describe the task kinematics by an M-dimensional
position vector x = [x;, X2, . . . , Xa]" that specifies
the location of the end effector with respect to a
system of environment-centered coordinates. The
manipulator configuration is fully described by an N-
dimensional array of generalized coordinates, g =
[qi. q>. . ... qn]". Redundancy is expressed by the
inequality M < N.

The forward kinematics is a vector map

x = x(q) (n

from configuration to end-effector position, which
we will assume to be continuous and differentiable
up to the second order in the entire work space.
Because of the redundancy, this map cannot be
uniquely inverted to obtain a configuration from an
end-point position vector. Instead, given a position,

1. A simply connected region is a region within which every sim-
ple closed curve can be shrunk to a point by a continuous trans-
formation without crossing the boundary of the region.
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Xo. equation (1) defines an N — M-dimensional Rie-
mannian manifold in the configuration space.
The differential transformation from configuration
displacements to end-effector displacements? is:
ax

with J(g) = —

dx = Jlg) dg Py

(2)
The matrix J is known as the Jacobian of the manip-
ulator, and the above expression can be geometri-
cally interpreted as the equation of an N — M-
dimensional euclidean hyperplane that is tangent to
the manifold of equation (1) at the point q. As is the
case for the finite map, the differential expression

(2) cannot be uniquely inverted for deriving a joint
configuration change from a desired end-effector .
position change.

3. The Problem of Integrability

One approach to redundancy resolution is that of
generating some global *‘inverse kinematic function™
(Baker and Wampler 1987; Wampler 1987). This can
be done, for example, by partitioning the configura-
tion variables into a nonredundant, or *‘secondary,”
set and a complementary, or ‘‘primary,’’ set. For
the former set, a closed-form solution is assumed to
be available, whereas the latter set is used as a
parameter whose value can be related in any arbi-
trary way to the end-point locations. A different
approach to redundancy resolution is based on the
local inversion of the direct kinematics as it is
expressed by the manipulator Jacobian, J. In this
article, we focus on this latter approach. which
involves the application of some generalized inverse,
P, of the Jacobian matrix. Given a desired end-point
displacement, dx, the corresponding configuration
change, dg, is underdetermined. Provided that the
Jacobian has full row rank, an expression that would
yield a configuration change such that dx = J(g) dg
is given by:

dg = ch(q) dx (3)
with ;
Pdg) = J"(g)JI(g)cd(g)") !

In this expression we have emphasized the fact that
the P. is, in general, a function of configuration, as
it is obtained from operations involving the Jacobian
matrix. The matrix ¢ is a “"weight matrix"" that para-
meterizes the pseudoinverse: by using the weighted

2. We use the notation (af/ax) to indicate the Jacobian matrix of
the vector function f. whose component i.j is (af/ax;).
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pseudoinverse P.. together with solving an inverse
kinematic problem, one minimizes the quadratic
form (dg"c™' dg). According to a more general alge-
braic definition (Ben-Israel and Greville 1980). a
generalized inverse, G of a real-valued matrix A is a
matrix that satisfies any one of the following condi-
tions:

AGA = A 4)

GAG = G (5)

(AG)T = AG (6)
and

(GA)T = GA. (7

There exists only one matrix that satisfies to all four
conditions. This is the Moore-Penrose (MP)-pseu-
doinverse of A. The weighted pseudoinverse, P.,
that we are considering here belongs to the broader
class of generalized inverses which satisfy the first
three conditions (4), (5) and (6). The MP pseudoin-
verse is obtained from P. by setting ¢ = I. The MP
pseudoinverse, Py = JT(J JT)~', minimizes the
norm of the configuration change (dq™ dg) compati-
ble with the desired end-point displacement, dx.

A well-known problem with this approach (Klein
and Huang 1983) arises when the end effector is
moved along a closed path in the work space. Start-
ing from a point x, and with a configuration g, and
coming back to the same point x, in one cycle, the
manipulator may be in a different configuration g, +
A, where the difference A is not necessarily zero.
Unfortunately. 4 cannot be considered as an
“error’’ associated with the use of finite steps in the
computations: taking smaller steps does not neces-
sarily reduce A. As cycles are repeated, these differ-
ences accumulate and may do so indefinitely,
although sometimes a limiting configuration is
reached. The disturbing impression associated with
this situation is that of unpredictability; one is una-
ble to establish the manipulator behavior at a more
global scale than that at which equation (3) is
defined.

These are symptoms of a very serious problem
affecting the conventional pseudoinverse solutions:
the problem of integrability. The vector expression
(3) is a shorthand representation for a system of N
equations known as total differential or Pfaffian
equations (Levi-Civita 1926). Such a system is said
to be integrable in a given domain if in this domain
there exists a map,

4 = qlx)

such that the expression (3) is the differential of this
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map—i.e., such that

aq.
Fe = ax’
Conversely, if the system is not integrable, a unique
global function from end-point position to configura-
tion does not exist, and the configuration associated
with a position of the end point will depend, among
other things, on the path used to reach that position.
A necessary and sufficient condition for the inte-
grability of the system in a simply connected domain
is that:

ch\i,I - ch\.i.lc (8)

dx; dx;

within this domain. Here the total derivatives must
be considered for taking into account not only the
explicit dependency of P upon x, but also the
implicit dependency, through g.(x). Unfortunately,
this criterion is difficult to apply to our kinematic
problem: the weighted pseudoinverse, P., depends
on the configuration g whose relation with the end-
effector position is unknown ‘until the integrability
problem has been solved. However, nonintegrability
of standard weighted pseudoinverses (i.e., pseudoin-
verses with constant weighting matrices) has been
demonstrated in particular cases (Klein and Huang
1983) and can be easily observed by iterating these
pseudoinverses along closed paths.

As was pointed out by Baker and Wampler (1987),
there is an equivalence between *‘cyclic’ tracking
algorithms and inverse kinematic functions. In the
context of our discussion, this equivalence is merely
the consequence of the fact that cyclic behavior
within a simply connected domain is a necessary
and sufficient condition for the integrability of a dif-
ferential form.?

4. Derivation of the Integrable Weighted
Pseudoinverses

In this article we define a new class of integrable
weighted pseudoinverses without using criterion (8).
Our method is based on two simple observations.
The first (tautologic) observation is that if a vector
map

y = f(x)

is differentiable in a given domain, then the differen-

3. According to a fundamental theorem of differential calculus,
the conditions expressed by eq. (8) are necessary and sufficient
for the integrability of the differential form (3) in any simply con-
nected domain within which P, is nonsingular.

tial map

with A = a—f

dv = A dx
ax

is integrable over the same domain. The second
observation is that two integrable differential maps,
du = A, dx and dy = A; du, can be combined in a
third map dy = A.A, dx, which is integrable pro-
vided that the range of the first map is contained
within the domain of integrability of the second
map.

Our specific goal is to set up an integrable map
from the end-point displacement, dx, of a manipula-
tor to a configuration displacement dg. The end-
point displacement is an M-dimensional vector,
whereas the configurational displacement is an N-
dimensional vector, with N > M. Hence, by making
use of the above observations, we start by defining a
differentiable map, a compliance, from generalized
forces to configurations. Then we combine this with
two other integrable maps: one from end-point
force-changes to generalized force-changes and the
other from end-point displacements to end-point
force-changes (the end-point stiffness). The final
result is a single integrable map from end point to
configuration displacements.

First, let us assume that for each degree of free-
dom, i, the generalized coordinate g; is. at steady
state, a differentiable function of the generalized
forces—i.e., that

g = @ Qi ...,Qn) and %
dch;
= : —x < Q;< +>
Cy —_-52/‘ ( )

where Q; is the components of the generalized force
vector. We indicate by QN the N-dimensional space
spanned by these components. It is evident that the
N differential equations

N
dgi = > ¢; dQ; (10)
i=1
are, by construction, integrable and have (9) as par-
ticular solutions with a set of initial conditions gqf =
®(Q\° . ..., Qn°. In vector/matrix notation the
equation (10) becomes:

dq = ¢ dQ (11)

This expression relates changes of system configu-
ration to changes in the (applied) generalized forces.
Its physical meaning is that of a compliant behavior
defined, at the level of each degree of freedom,
either by the intrinsic mechanical properties of the
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actuators or by the steady-state performance of their
controllers. Because, by hypothesis, the functions
(9) are differentiable in the entire QM. it follows that
equation (11) is integrable in the entire QM. Note
that the kinematic constraints of the system do not
appear in any of the above equations. Thus the val-
ues that can be assumed by the generalized force
vector in QM are unrestricted.

As we take into account the kinematic constraints
arising from the geometric structure of a redundant
manipulator, we obtain a restriction for the values
that can be assumed by the generalized forces in
QM. Given that the system kinematics is described
by equation (2), the generalized force vector, Q, at a
configuration ¢, is uniquely derived from the M-
dimensional end-effector force, F = [F,. .. ..
qurr:

0 = J(q)'F (12)

~ Because the configuration, g, is itself a function of
the generalized force [equation (9)], the above
expression cannot be considered as an explicit defi-
nition of the map from end-effector force to general-
ized force. However, the equation

Q-Jq@'F=0

defines implicitly a differentiable map, O = Q(F),
provided that

det(/ — It) # 0. (13)

Here, I'is an N X N matrix containing the second
derivatives of the transformation from configuration
to end-effector coordinates. The element I3 is:
M
fis E, 0q,9q;

With hypothesis (13) being satisfied, equation (12)
defines an M-dimensional constraint surface, X, for
the generalized forces, & C QM. Because the integra-
bility of equation (11) applies to the whole QV, it
also applies to X.* From a geometric standpoint, the
problem of deriving a differential expression from
equation (12) [i.e., an expression to be substituted
for dQ in equation (11)] is equivalent to the problem
of finding, for any value Q on X (i.e., for any gener-
alized force satisfying the kinematic constraints), the
plane passing through Q and tangent to X. In gen-

32Xk

Fy. (14)

4. To show this, it is sufficient to consider any two points. O,
and Q:. on X .and to show that by integrating equation (11). the
same result is obtained. regardless of the path chosen on X that
joins these points. This must be true, because the two points and
any path on ¥ also belong to QN where integrability of equation
(11) has been already proved.
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eral, given a nonlinear transformation from general-
ized to end-effector coordinates. X is a curved Rie-
mann surface whose tangent plane, Iy, at a point g
is obtained by differentiating equation (12). To this
end, one must take into account that, given a change
dF in the end-point force, the system will settle at a
new steady-state configuration, ¢ + dg. Accord-
ingly, the Jacobian will change by an amount dJ =
J(g + dg) — J(g) and the change of generalized

force, at steady state, is given by
dQ = J'dF + dJ F. (15)

To find a better expression for the last term on the
right side, we expand the expression of its ith com-
ponent (i = 1,...N):

K N 2
I Fy =S (2 X g

N
Fm = FL dqg;.
m=1 \/=1 04/0G; q/) ,g, Lo
In vector notation, the above expression becomes
dJ F = I'dq.

By substituting equation (11) for dgq, we finally
obtain

dQ = (I — I'c)~'"JT dF, (16)

which defines the tangent plane Ilg to . The above
expression is integrable, as it has been obtained by
differentiating equation (12). Note that with a linear
geometry or with zero end-effector force, Ilq coin-
cides with 2. Hence Ic can effectively be inter-
preted as a correction term that must be applied to
the Jacobian to obtain the actual tangent planes with
a curved (or Riemannian) constraint surface X.

Then by replacing the expression (16) for dQ in
equation (11), we obtain the following expression for
dg:

dg = c¢(I — I'c)"'"JTdF = (k — D™'JTdF
with

(17)

This expression is also integrable, as it is the combi-
nation of two integrable maps (dF + dQ and dQ +
dq).

Finally, considering the transformation from gen-
eralized to end-point coordinates

dx = J(q) dq,

which is integrable by hypothesis, we obtain an

integrable differential transformation
dx = C.dF with C. = Jtk — D™YJT, (18)

which yields a map, x = x(F), from end-point force
to end-point position. Indicating by X the end-point
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work space. by Z the sct of points in X in which
det(C.) = 0. and by X — Z the remaining portion of
the work space, we have that the map (18) can be
uniquely inverted in any simply connected region of
X — Z. Accordingly. the differential transformation

dF = K. dx with K. = C' (19)

is both well defined and integrable in the same
region. By combining equations (17) and (19), we
obtain a single expression for dg given dx:

dg = P4 dx
Py = (k- D JUNJk-D"IH !,

The matrix P, is a weighted pseudoinverse of the
Jacobian matrix [the weight matrix being (k —

I ~"]. The differential expression (20) is integrable
by construction, as it has been obtained from a com-
bination of integrable maps. We want to stress that
integrability applies within simply connected regions
without singularities (physically, regions in which an
arbitrary displacement can be imposed on the end
effector without encountering an infinite resistance).
In contrast, conventional weighted pseudoinverses
tend to be nonintegrable in any region of the work
space, regardless of the presence or absence of sin-
gularities.

with (20)

5. A Special Case: The Modified Moore-
Penrose Solution

A special case of integrable weighted pseudoinverse
is obtained when the compliance function is linear;
ie..

g = cQ + qo. 2n

Then the integrable weighted pseudoinverse is a
modified version of the standard weighted pseudoin-
verse, with constant weighting coefficients. In par-
ticular, if the compliance is the identity matrix, /,
we have a modified Moore-Penrose (MMP) solution,
which has the property of being integrable,

Po=(U-D"YYJU-D"IH'" (22)

Note that I, like J, is a function of configuration.
Because the MP pseudoinverse corresponds to the
choice of minimizing the norm of the configuration
displacements, the matrix I can be interpreted. in
this context. as a correction for the curvature of the
configuration space.

6. Passive versus Active Displacements

One physical interpretation of the integrable
weighted pseudoinverse defined by equation (20) is

that of a simulation of an externally imposed (or
“‘passive’’) displacement of the manipulator. The
steady-state behavior of the manipulator is defined
by its compliance equation, and the task can be rep-
resented by an ideal position-servo operating on the
end effector to bring it along the desired path. Then
the degrees of freedom move in such a way as to
minimize the potential energy stored in the compli-
ance of the actuators. We have shown that the
matrix [I"is essential to simulate this process cor-
rectly by taking into account the effects of the non-
linear geometries, which become significant as the
end effector moves away from the equilibrium posi-
tion. Neglecting I" not only would generate an error.
but also would, in general, result in a nonintegrable
solution to the inverse kinematics.

The interpretation in terms of externally imposed
(or “*passive’’) displacements assumes a fixed equi-
librium configuration for the manipulator. An alter-
native point of view, more directly related to manip-
ulator control, is to consider I" as an impedance
component instead of a geometric term. We assume
that steps are taken from equilibrium positions and
that after each step the manipulator is brought to
equilibrium. To achieve this, the N configuration
variables, q;, must depend not only on the general-
ized forces, but also on N control inputs, vu;. Then
the compliance function has the form:

qg = ¢ (0, u). (23)
The equilibrium configuration associated. at
steady state, with an input « is
golu) = & (0, u). (24)

A change, du, of the input causes the equilibrium
configuration to be updated by an amount:
Lol

with o0 = —. (25)
ou

dge = o du
Here ois a local sensitivity matrix that we will
assume to be nonsingular (det(o)  0). Then. as the
input changes smoothly in time, the above equation
defines a sequence of static equilibria that has been
termed a virtual trajectory (Hogan 1984).

The inverse kinematic problem becomes that of
finding an appropriate sequence of inputs u(t), given
a desired trajectory of the end effector, xo(t). in the
work space. One way to do this is to simulate pas-
sive displacements that will drive the joints away
from equilibrium; then, at the end of each displace-
ment, the input is modified to set equilibrium at the
new manipulator configuration. Starting from an
equilibrium position, x, [corresponding to gy(u)]. the
weighted pseudoinverse approach corresponds to
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iterating a change of equilibrium, dg, = P, dxy. by
updating the input with du = o~ ' dg,. Because this
process occurs about equilibrium, the matrix I is
zero, and the method corresponds to applying the
standard weighted pseudoinverse, P = ¢J"(JcJ V)™,
Because I'is zero, there is no guarantee that the
input update is integrable (i.e., that given a closed
path of the hand, the input returns to its initial
value).

Integrability can be recovered by specifying the
manipulator compliance in such a way as to obtain
the known integrable weighted pseudoinverse of
equation (20). This corresponds to requiring that at
each equilibrium configuration, the joint compliance,
c, is:

- n-!

where ¢’ is the compliance associated to some
known differentiable function ¢'(Q). Thus if the
manipulator controller is able to modify the the com-
pliance [equation (23)] functions, our method can be
used to regularize the inverse kinematic problem

through an appropriate choice of compliance param-
eters.

c = (c (26)

7.-Remark-on Singularities

In the discussion of kinematic inversion methods, it
has become common practice to distinguish between
two types of singularities: structural singularities and
algorithmic singularities. The first is a property of
hardware. the second of software. Structural singu-
larities are those arising from the geometric proper-
ties (i.e., the **hardware’’) of a manipulator. They
correspond to those work space locations at which
the Jacobian becomes rank deficient. In contrast,
algorithmic singularities result from the ‘*extra’” con-
straints set by the specific optimization method (i.e.,
the “*software’’) that is used to regularize kinematic
ill-posedness.

We believe that this distinction between structural
and algorithmic singularities ceases to be significant
in the context of our weighted pseudoinverse
method. The weighted pseudoinverse operator, Py
leq. (20)], does indeed become singular whenever
the end-point compliance, C. = (J(k — D~'J")~",
loses rank. This may happen only under two circum-
stances: (1) when the Jacobian loses rank, or (2)
when the ‘‘linearized joint compliance,”” ¢iun =
(k — N~ loses rank.

One could erroneusly infer from equation (20) that
a third case of singularity in P, may arise when
(k — I loses rank. However, this is not the case,
as it can be seen from the following argument. Let
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D = det(k — Nand A = Adj(k — I'). (Adj()
denotes the adjoint matrix.) Then, it is

cun = DA,
and the expression for P4, becomes
Py = AJT(JATT)™".

The above simplification, which results from the
cancellation of D with D', is valid with an arbitrary
small D, as well as at the limit for D — 0. Therefore
the points at which D = 0 are not singularities for
the weighted pseudoinverse Py.

Both singular cases, (1) and (2), correspond to a
physical loss of mobility of the manipulator end
point along some direction(s). The second condition,
in which ¢~ becomes rank deficient, can be con-
sidered as an *‘algorithmic’” singularity to the extent
that the compliance matrix may reflect a specific
impedance control strategy. However, a fundamen-
tal conjecture underlying impedance control is that it
should be impossible through physical interaction
with a machine to distinguish between the hardware
and software contributions to its apparent behavior
(Hogan 1985). In particular, this conjecture applies
to our weighted pseudoinverse, which has been
derived as the differential equation governing the
passive displacement of a physical system.

We have succeeded in demonstrating that our
weighted pseudoinverse is integrable within any sim-
ply connected domain of the work space. Of course,
integrability ceases to hold along any end-point path
enclosing one or more singular points (a well-known
result of differential calculus). The converse is also
true: if iterating P, along a closed path in the work
space results in an open path in configuration space,
then one or more singularities exist within that work
space region. In principle this could provide a
method for exploring the singularities in the work
space. Note that this method would not work using
the Moore-Penrose pseudoinverse or any other non-
integrable operator.

(27)

8. Parameterized Postura] ’Maps

The subscript ¢ in equation (20) indicates that our
weighted pseudoinverse is parameterized by the
choice of the compliance function. Because the dif-
ferential map (20) is integrable by construction
within simply connected regions of the work space,
the compliance function parameterizes not only a
local relation, but also a global map of postures
within any such region:

g = gelx). (28)
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We want to stress that the domain over which the
above global map can be derived by integrating the
weighted pseudoinverse (20) is analogous to the
“‘feasible work space’ (Wampler 1987) over which
inverse kinematic functions may be defined. Here
the role of a compliance function, with respect to
the redundant inverse kinematic problem, is that of
selecting a unique map from end- effector to configu-
ration. Different kinematic solutions can be obtained
by choosing different compliance functions. In par-
ticular, a way to generate different maps is by
choosing different initial conditions for the differen-
tial equation (20). In the paradigm of ‘passive motion
described in the previous section, this corresponds
to the choice of an equilibrium configuration gy.
Another possibility is to select different matrices of
joint compliance, ¢. Both alternatives are special
cases of compliance function selection. '

Global postural maps can be generated in the form
of look-up tables indexed by the end-point location.
The simplest procedure to generate such a look-up
table, corresponding to a specific compliance func-
tion, ¢, is the following:

1. First, define the equilibrium configuration, g,
= ¢ (0), and the corresponding end-point posi-
tion, xo = x(qo). At this location, F = 0 and,
consequently, I"'="0.

2. Then, the other‘tabulated positions are
obtained from a finite set of end-effector dis-
placements, {dx}: xn., = x, + dx,. The corre-

" sponding configuration is derived by applying
the weighted pseudoinverse: i.e., gn+1 = ¢n +
Psn dgs. In order to derive the weighted pseu-
doinverse, Py, one must know the value of
the end-point force, F, at x, [see equation (14)].
This is given by iterating Fr.y = F, + dF,
with dF, = K. dx,. The term K. in the last
expression is given by equations (18) and (19).
The initial condition is Fo = 0.

9. A Numeric Example

Here we present the results of a numeric simulation
of the integrable weighted pseudoinverse in the spe-
cial case of the MMP [equation (22)]. We applied the
algorithm to the same three-joint planar kinematic
mechanism considered by Klein and Huang (1983).
The joints are revolute, and their axes of rotations
define the z-axis of a cartesian coordinate system.
The end point of the mechanism lies in the x-y plane
of this coordinate system, and the kinematics are
defined by the transformation:

TPE = [(xend -

x = I, cos(q,) + l cos(q, + ga)
+ Ll cos(qr + q2 + q3) (29)
y = l; sin(q,) + l2sin(q, + q2)

+ 13 sin(q, + @2 + qa).

Here, 1, I, and |5 are the lengths of the three arm
segments (‘*humerus,” **forearm,” and ‘‘hand,"’
respectively) and q,, gz, and qs are the relative joint
angles (at the *‘shoulder,” *‘elbow,’” and ‘‘wrist,”
respectively).

Starting from an initial configuration the algorithm
requires the tip to move along a predefined closed
path. The motion is divided into steps: at each step
of the tip the corresponding joint displacement is
derived using either the MP or the MMP pseudoin-
verse. The desired step of the tip is divided by two
until all the joint angle changes are less than a given
threshold, 8. Thus the parameter & defines the actual
number of steps, NA, given a desired maximum
angular change of each joint. At the end of the cycle
we derive the tip position error, TPE, and the joint
configuration error, JCE. The former is the cartesian
distance between end and start location of the tip,
xstan): + (Yend — y.sturt)2]”2~ Simi-
larly, JCE is the distance between final and initial
configuration in joint angle coordinates. The MMP
solutions were derived by assuming that the starting
configuration was at equilibrium (F = 0) and by
applying the algorithm described at the end of the
previous section.

The results of some simulations with the MP and
with the MMP are shown in Table 1. These data
refer to a single trajectory of the tip. The starting
configuration is geur = [45, 110, 0]™. The corre-
sponding starting location of the tip is r = [—24.10,
42.34]T cm (the manipulator link lengths are I, = 30
cm, b = 30 cm, and I; = 20 cm). The closed end-
point path is a square with 20 cm sides (about 2% of
the work space area).

The MP and the MMP are equally efficient in the
kinematic inversions. This is shown by the fact that
the TPEs generated by the two methods are approxi-
mately equal, and they decrease in the same way as
the maximum configuration change & decreases. The
pattern of the JCEs highlights the difference
between the standard MP and the MMP: as
expected, the joint configuration error associated
with the MP is significantly high (of the order of a
tew degrees) and is not changed by reducing 8. In
contrast, the joint configuration error associated
with the MMP decreases monotonically with 8, hav-
ing the same order of magnitude.

Furthermore, the two methods yield different
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Table 1. Iteration Over a Closed Path of the Moore-
Penrose (MP) and of the Modified Moore-Penrose
(MMP) Pseudoinverses*

MP
Starting configuration: (45, 110, 0) degrees
Starting tip position: ( —24.10, 42.34) cm
Path length: 80 cm

5 TPE JCE
(degrees) N (cm) (degrees)
107! 1,940 4.9110°* 4.38
10-2 18.202 5.2310°% 4.43
10-? 192,175 5.02107* 4.44
107 1.965.093 4.85107° 4.44
MMP
Starting configuration: (45, 110, 0) degrees
Starting tip position: (—24.10, 42.34) cm
Path length: 80 cm
) TPE JCE
(degrees) N (cm) (degrees)
107! 1,964 4.76 1071 9.59 10~
1072 18.920 493 10°° 1.00 10~
1077 192,730 4,79 107 9.86 10~
1074 1.956,155 473 10°° 9.61 10~°

*The starting point and the path are identical in the two cases.
The path is a square with the starting position at the lower right
corner and is traversed in the counterclockwise direction. 8: max-
imum angle change allowed in a single step: N: number of itera-
tions; TPE: tip position error. defined as (AX* + AY*)"?; JCE:
joint configuration error. defined as (Aq,® + Agy® + AgsH)".

results when the path length increases at constant 6
(Table 2). With both methods the tip position error
and the joint configuration error increase linearly
with the path length. However, with the MP, the
slope of JCE vs. TPE is almost 300°cm (regression
coefficient, r = 0.964), whereas with the MMP, the
same slope is two orders of magnitude less (r =
0.994). With the MP method the joint configuration
error, after a single closed path of 160 cm. can get
as big as 20°, whereas with the MMP method it
remains limited to a few tenths of a degree at 6 =
0.1°.

Taken together, these results indicate that the
joint configuration error seen in the simulation of the
MMP method is due only to the discretization and
can be made arbitrarily small with the appropriate
choice of 8. Furthermore, for any 8 and for any path
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Table 2. Iteration of MP and MMP Over Closed
Paths With Increasing Length*

MP
Starting configuration: (—30, 130, 60) degrees
Starting tip position: (1.98, 21.39) cm
8 = 107! degrees

Path

length TPE JCE

(cm) N (cm) (degrees)
40 930 2.1510°2 4.79
80 1,807 3.90 1072 12.2
120 2.486 5.08 1073 18.5
160 3,226 8.63 107 24.6

MMP
Starting configuration: (—30, 130, 60) degrees
Starting tip position: (1.98, 21.39) cm

= 10~! degrees

Path

length TPE JCE

(cm) N (cm) (degrees)
40 933 2.28 1072 5.68 1071
80 1,713 4621072 1.09 107!
120 2,451 6.68 1072 1.47 107"
160 3,246 9.28 1072 227107

* The paths are squares with the starting position at.the lower
right corner. The maximum joint angle change. &, is 107 '° in all
cases. See Table | for notation.

length, the effective number of steps, NA, carried
out with each method is approximately the same.
Hence in spite of the fact that a single step with the
MMP method requires more operations than a step
with MP, the order of magnitude of their computa-
tional costs is the same.

The possibility of generating different postural
maps by selecting different compliance functions is
demonstrated in Figures 1 and 2. Here we used a
linear compliance function:

g = cT + qo,

with a diagonal joint compliance matrix, c. The
three diagonal terms of ¢ specify, respectively, the
joint stiffness at the shoulder, ¢, ., at the elbow,
c2.2, and at the wrist, ¢; ;. Different postures corre-
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sponding to the same end-point locations can be
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11 = —-0.1
c22 == —1
C33 = —1

C33 = -

Y
o /
c2 = —-0.1
1 \

\:
CliL = -1

c22 == —1
c33 = —-0.1

Fig. 1. Different postural maps generated by different
choices of joint compliance (cll: shoulder; c22: elbow;
¢33: wrist). Darker lines indicate the equilibrium configu-
ration.

obtained by assigning different values to these coef-
ficients (see Fig. 1). As can be intuitively under-
stood, assigning a high compliance value to a joint
tends to result in larger motions of that joint across
the work space.

An alternative way of parameterizing postures is
by selecting different initial configurations at a given
end-point location (see Fig. 2). This can be done by
null-space motions® about an initial configuration g.

In both cases, the differences among postural
maps tend to diminish near the boundary of the
work space. This is a direct consequence of the
decrease in manipulability (Yoshikawa 1985)—i.e.,
of the loss of effective redundancy—in these
regions.

S. Given a weighted pseudoinverse, P, of the Jacobian J, a null-
space motion g~ can be obtained from Ay~ = (I = PJ)E, where
¢ is an arbitrary N-dimensional vector.

/.

gl = -30
g2 = 130
g3 == 60

gl = =13

g2 = 177
g3 = -78

Fig. 2. Different postural maps generated by different
choices of initial configuration (darker lines). The three
angles q,. q», and q3 are given in degrees and are relative
angles; q, = upper arm 10 base, q. = forearm to upper
arm, s = hand to forearm.

10. Conclusions

Many conventional solutions to the inverse kinemat-
ics problem for redundant manipulators involve the
use of weighted generalized inverses of the Jacobian
matrix. However, it has been recognized (Klein and
Huang 1983) that weighted pseudoinverses with con-
stant weighting matrices are not integrable. Conse-
quently when one iterates one of these kinematic
solutions, such as the Moore-Penrose pseudoin-
verse, the configuration corresponding to a desired
end-effector location will, in general, depend on the
path used to reach that location.

Other investigators have addressed this problem
by combining null-space motions with the Moore-
Penrose solution (Baillieul et al. 1984; Baillieul
1985). Here we take a different approach and dem-
onstrate that there exists a subset of the weighted
pseudoinverses whose elements are integrable. The
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weighting matrices of these integrable pseudoin-
verses are position dependent instead of constant. In
this article, the issue of integrability has been cast in
terms of manipulator mechanics: given a redundant
mechanism, a kinematic task can be represented as
an externally imposed displacement of the end effec-
tor. Then, assuming that a compliance function is
associated to each degree of freedom, this externally
imposed motion results into a unique and integrable
motion in configuration space. In particular, if the
joint compliance is mechanically conservative (i.e.,
if the local compliance matrix is symmetric), the
joint configuration corresponding to the externally
imposed position of the end effector is at minimum
potential energy.

We have shown that the correct simulation of
these externally.imposed displacements requires
considering the position dependence of the Jacobian
matrix that characterizes nonlinear manipulator
geometries. In this context, the use of conventional
weighted pseudoinverses, with constant weighting
matrices, would be invalid and misleading: invalid
because changes of Jacobian must be taken into
account in the differential transformations from end-
effector forces to generalized forces, and misleading
because conventional weighted pseudoinverses are
sufficient to satisfy the kinematic constraints and
therefore to generate configurational changes that
“*look like'" actual solutions. Fortunately, kinematic
nonlinearities are completely captured by a single
correction matrix that has the physical meaning of
an apparent joint stiffness term. This correction
matrix vanishes at static equilibrium but becomes
increasingly significant away from equilibrium, as
the end-effector forces (induced by the joint compli-
ance function) become larger. Our analysis indicates
that the correction matrix is also sufficient to ensure
the integrability of the weighted pseudoinverse.

This result can also be applied to the generation of
active movements when these are obtained by modi-
fying the torque/angle relation associated with each
joint. For example, an active change of configura-
tion is produced by varying the equilibrium position
of each degree of freedom. Such a scheme can be
implemented in a way that is consistent with an
externally imposed displacement of the end effector
(Mussa-Ivaldi et al. 1988): each joint equilibrium is
actively changed by the same amount that would
have been induced by the imposed motion of the end
effector. Then integrability is ensured by an appro-
priate choice of the joint compliance throughout the
work space (i.e.. by including the correction matrix
as an effective component of the joint impedance
instead of as a compensation for nonlinear kinemat-
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ics). In this context, the planning of inverse kine-
matics becomes a subset of impedance control
(Hogan 1980, 1985): given a single task. different
kinematic patterns can be generated by selecting dif-
ferent joint compliance functions.
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