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Redundancy is a fundamental feature of the human motor system 
that arises from the fact that there are more degrees of freedom 
available to control a movement than are strictly necessary to 
achieve the task goal (Bernstein, 1967).

Redundancy at various levels:
o Task -> End Effector Trajectory (Min. Jerk, Min. Energy etc.)
o End Effector -> Joint Angles (Inverse Kinematics)
o Joint Angles -> Joint Torques (Inverse Dynamics)
o Joint Torques -> Joint Stiffness (Variable Impedance)
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 Variable Stiffness Actuator

 … and an optimization framework
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MACCEPA: Van Ham et.al, 2007

DLR Hand Arm System:
Grebenstein et.al., 2011
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Optimal controller

Optimise cost function

(e.g. minimum energy)

Task & constraints are 
intuitively encoded
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Given: 
 Start  & end states, 
 fixed-time horizon T and
 system dynamics 

And assuming some cost function: 

Apply Statistical Optimization techniques to find optimal control commands

Aim: find control law π∗ that minimizes vπ (0, x0).
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How the system reacts (∆x) to forces (u)



 Analytic Methods

 Linear Quadratic Regulator (LQR)

 Linear Quadratic Gaussian (LQG)

 Local Optimization Methods

 iLQG, iLDP

 Dynamic Programming (DDP)
 Inference based methods

 AICO, PI^2, …



OFC law
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Assume knowledge of actuator dynamics
Assume knowledge of cost being optimized

 Explosive Movement Tasks (e.g., throwing)

 Periodic Movement Tasks and Temporal 
Optimization (e.g. walking, brachiation)

 Learning dynamics (OFC-LD)



Assume knowledge of actuator dynamics
Assume knowledge of cost being optimized

 Explosive Movement Tasks (e.g., throwing)
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David Braun, Matthew Howard and Sethu Vijayakumar, Exploiting Variable Stiffness for Explosive Movement Tasks, 
Proc. Robotics: Science and Systems (R:SS), Los Angeles (2011)



Highly dynamic tasks, explosive movements

David Braun, Matthew Howard and Sethu Vijayakumar, Exploiting Variable Stiffness for Explosive Movement Tasks, 
Proc. Robotics: Science and Systems (R:SS), Los Angeles (2011)



The two main ingredients:

Compliant Actuators

 VARIABLE JOINT STIFFNESS

Torque/Stiffness Opt.

 Model of the system dynamics:

 Control objective:

 Optimal control solution:
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iLQG: Li & Todorov 2007
DDP: Jacobson & Mayne 1970
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Van Ham et.al, 2007

DLR Hand Arm System:
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David Braun, Matthew Howard and Sethu Vijayakumar, Exploiting Variable Stiffness for Explosive Movement Tasks, 
Proc. Robotics: Science and Systems (R:SS), Los Angeles (2011)



Quantitative evidence of improved task performance
(distance thrown) with temporal stiffness modulation as
opposed to fixed (optimal) stiffness control

Benefits of Stiffness Modulation:

David Braun, Matthew Howard and Sethu Vijayakumar, Exploiting Variable Stiffness for Explosive Movement Tasks, 
Proc. Robotics: Science and Systems (R:SS), Los Angeles (2011)



Exploiting Natural Dynamics:

a) optimization suggests power amplification through pumping energy
b) benefit of passive stiffness vs. active stiffness control

David Braun, Matthew Howard and Sethu Vijayakumar, Exploiting Variable Stiffness for Explosive Movement Tasks, 
Proc. Robotics: Science and Systems (R:SS), Los Angeles (2011)



Simultaneous stiffness and torque optimization of a VIA actuator that reflects 
strategies used in human explosive movement tasks:

a) performance-effort trade-off
b) qualitatively similar stiffness pattern
c) strategy change in task execution

Behaviour Optimization:
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David Braun, Matthew Howard and Sethu Vijayakumar, Exploiting Variable Stiffness for Explosive Movement Tasks, 
Proc. Robotics: Science and Systems (R:SS), Los Angeles (2011)



Assume knowledge of actuator dynamics
Assume knowledge of cost being optimized

 Explosive Movement Tasks (e.g., throwing)

 Periodic Movement Tasks and Temporal 
Optimization (e.g. walking, brachiation)

 Learning dynamics (OFC-LD)

Jun Nakanishi, Konrad Rawlik and Sethu Vijayakumar, Stiffness and Temporal Optimization in Periodic Movements: An 
Optimal Control Approach , Proc. IEEE Intl Conf on Intelligent Robots and Systems (IROS ‘11) , San Francisco (2011).



•what is a suitable representation of periodic 
movement (trajectories, goal)?

Representation

Choice of cost function
•how to design a cost function for periodic movement?

Exploitation of natural dynamics
•how to exploit resonance for energy efficient control?

•optimize frequency (temporal aspect)
•stiffness tuning



Cost Function for Periodic Movements
Optimization criterion

Terminal cost

Running cost

•ensures periodicity of the trajectory

• tracking performance and control cost

Jun Nakanishi, Konrad Rawlik and Sethu Vijayakumar, Stiffness and Temporal Optimization in Periodic Movements: An 
Optimal Control Approach , Proc. IEEE Intl Conf on Intelligent Robots and Systems (IROS ‘11) , San Francisco (2011).



Another View of Cost Function
•Running cost: tracking performance and control cost

•Augmented plant dynamics with Fourier series based DMPs

•Find control     and parameter      such that plant dynamics 
(1) should behave like (2) and (3) while min. control cost

•Reformulated running cost

Jun Nakanishi, Konrad Rawlik and Sethu Vijayakumar, Stiffness and Temporal Optimization in Periodic Movements: An 
Optimal Control Approach , Proc. IEEE Intl Conf on Intelligent Robots and Systems (IROS ‘11) , San Francisco (2011).



Temporal Optimization
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How do we find the right temporal duration in which 

to optimize a movement ? 

Solutions:

•Fix temporal parameters

... not optimal

•Time stationary cost

... cannot deal with sequential tasks, e.g. via points

•Chain ‘first exit time’ controllers   

... Linear duration cost, not optimal

•Canonical Time Formulation



Canonical Time Formulation

n.b.     represent real time

Dynamics:

Cost:

Introduce change of time



Canonical Time Formulation

n.b.     represent real time

Dynamics:

Cost:

Introduce change of time

n.b.     now represents canonical time

Konrad Rawlik, Marc Toussaint and Sethu Vijayakumar, An Approximate Inference Approach to Temporal Optimization 
in Optimal Control, Proc. Advances in Neural Information Processing Systems (NIPS '10), Vancouver, Canada (2010).



AICO-T algorithm
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• Use approximate inference methods 

• EM algorithm

• E-Step: solve OC problem with fixed β

• M-Step: optimise β with fixed controls

Konrad Rawlik, Marc Toussaint and Sethu Vijayakumar, An Approximate Inference Approach to Temporal Optimization 
in Optimal Control, Proc. Advances in Neural Information Processing Systems (NIPS '10), Vancouver, Canada (2010).



• 2 DoF arm, reaching task

• 2 DoF arm, via point task

Spatiotemporal Optimization



Temporal Optimization in Brachiation

•Cost function
•Optimize the joint torque and movement duration

: gripper position

: canonical time

•Time-scaling

• Find optimal       using iLQG and update     in turn until 
convergence [Rawlik, Toussaint and Vijayakumar, 2010]

Jun Nakanishi, Konrad Rawlik and Sethu Vijayakumar, Stiffness and Temporal Optimization in Periodic Movements: An 
Optimal Control Approach , Proc. IEEE Intl Conf on Intelligent Robots and Systems (IROS ‘11) , San Francisco (2011).



•vary T=1.3~1.55 (sec) and compare required joint torque
•significant reduction of joint torque with 

Temporal Optimization of Swing Locomotion

Jun Nakanishi, Konrad Rawlik and Sethu Vijayakumar, Stiffness and Temporal Optimization in Periodic Movements: An 
Optimal Control Approach , Proc. IEEE Intl Conf on Intelligent Robots and Systems (IROS ‘11) , San Francisco (2011).



Swing-up and locomotion

Optimized Brachiating Manoeuvre

Jun Nakanishi, Konrad Rawlik and Sethu Vijayakumar, Stiffness and Temporal Optimization in Periodic Movements: An 
Optimal Control Approach , Proc. IEEE Intl Conf on Intelligent Robots and Systems (IROS ‘11) , San Francisco (2011).
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Locally Weighted Projection Regression (LWPR) for dynamics learning 
(Vijayakumar et al., 2005). 
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S. Vijayakumar, A. D'Souza and S. Schaal, Online Learning in High Dimensions, Neural Computation, vol. 17 (2005)



• OFC-LD uses LWPR learned dynamics for optimization (Mitrovic et al., 2010a)
• Key ingredient: Ability to learn both the dynamics and the associated

uncertainty (Mitrovic et al., 2010b)

Djordje Mitrovic, Stefan Klanke and Sethu Vijayakumar, Adaptive Optimal Feedback Control with Learned Internal 
Dynamics Models, From Motor Learning to Interaction Learning in Robots, SCI 264, pp. 65-84, Springer-Verlag (2010).



Reproduces the “trial-to-trial” variability in the uncontrolled 
manifold, i.e., exhibits the minimum intervention principle that is 
characteristic of human motor control. 

KUKA LWR Simulink Model Minimum intervention principle



High accuracy while remaining compliant and energy efficient. 



Djordje Mitrovic, Stefan Klanke and Sethu Vijayakumar, Learning Impedance Control of Antagonistic Systems based on 
Stochastic Optimisation Principles, International Journal of Robotic Research, Vol. 30, No. 5, pp. 556-573 (2011).



Constant Unidirectional Force Field

Velocity-dependent Divergent Force Field

Can predict the “ideal observer” 
adaptation behaviour under 
complex force fields due to the 
ability to work with adaptive 
dynamics

Djordje Mitrovic, Stefan Klanke, Rieko Osu, Mitsuo Kawato and Sethu Vijayakumar, A Computational Model of Limb 
Impedance Control based on Principles of Internal Model Uncertainty, PLoS ONE, Vol. 5, No. 10 (2010).

Cost Function: 



OFC-LD is computationally more efficient than iLQG, 
because we can compute the required partial derivatives 
analytically from the learned model



2 joint and
6 antagonistic muscles

Constant force field

Online adaptation!

Overshoot
Online re-anneal

Muscle plots:

Minimal co-contraction remains

Optimized co-contraction profiles are quite different from how humans use 
their antagonistic musculoskeletal system. So what is missing?

Djordje Mitrovic, Stefan Klanke, Sethu Vijayakumar, Adaptive Optimal Control for Redundantly Actuated Arms, Proc. 
Tenth International Conference on the Simulation of Adaptive Behavior (SAB '08), Osaka, Japan (2008) 
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See: Osu et.al., 2004; Gribble et al., 2003



Stochastic OFC-LD Deterministic OFC-LD

Djordje Mitrovic, Stefan Klanke, Rieko Osu, Mitsuo Kawato and Sethu Vijayakumar, A Computational Model of Limb 
Impedance Control based on Principles of Internal Model Uncertainty, PLoS ONE (2010). 



Assume knowledge of actuator dynamics
Assume knowledge of cost being optimized

 Explosive Movement Tasks (e.g., throwing)

 Periodic Movement Tasks and Temporal 
Optimization (e.g. walking, brachiation)

 Learning dynamics (OFC-LD)



Assume knowledge of actuator dynamics
Assume knowledge of cost to be optimized

 Routes to Impedance Behaviour Imitation
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‘Ideal’ VSA:
•

• stiffness (k), eq. pos. (q0) 
directly controllable

Tkq ),(u 0

MACCEPA:
•

• (nearly) de-coupled, stiffness 
and eq. pos. control

Tmm ),(u 21

Edinburgh SEA:
•

• biomorphic, antagonistic design
• coupled stiffness and  eq. pos.

T),(u









Direct Transfer:
Feed EMG directly 
to motors

Impedance Transfer:
Pre-process EMG, 
track stiffness 
and equilibrium 
position

Matthew Howard, David Braun and Sethu Vijayakumar, Constraint-based Equilibrium and Stiffness Control of Variable 
Stiffness Actuators, Proc. IEEE International Conference on Robotics and Automation (ICRA 2011), Shanghai (2011).







Transfer ball hitting task across different VIAs:

Very different command sequences due to 
different actuation

Optimal impedance control strategy very similar 
across plants



• Direct imitation: lower velocity at time of impact,  less powerful hit
• Apprenticeship learning:  movement is optimised to robot dynamics, ball is hit further

M. Howard, D. Mitrovic & S. Vijayakumar, Transferring Impedance Control Strategies Between Heterogeneous Systems 
via Apprenticeship Learning,  Proc. IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA (2010)).



 Model-based transfer of human behavior has relied on 
demonstrator’s dynamics: in most practical settings, 
such models fail to capture

 the complex, non-linear dynamics of the human 
musculoskeletal system

 inconsistencies between modeling assumptions and the 
configuration and placement of measurement apparatus 



 Original             Monte Carlo method and model-based method on MWAL
Requires: (human) dynamics model ef

 Model-free       LSTDf and LSPIf combined on MWAL
Requires: exploratory data aD instead of using dynamics model



 Policy Optimization
 iLQG

▪ Repeat until convergence
▪ is sampled under ef and π
▪ For t = T-1 to 0
 Value estimation (Taylor expansion)

 Policy optimisation

 Estimate values
 Monte Carlo method

▪ Sample
▪ Estimate K
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 LSPIf

▪ For t = T-1 to 0

 Value estimation with aD and

 Policy optimization

▪ off-policy:

sampling phase (generating aD) is 
excluded from learning process
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(from graph Laplacian)

 LSTDf (LSPIf with fixed policy)
▪ Estimate KkTt
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Model-based Model-free 
(off-policy, finite horizon)



 Sampling phase

 is generated

 Learning phase

 For t = T-1 to 0
▪ Value estimation

▪ Policy optimisation

 Sampling phase 

 is generated

 Learning phase

 Repeat until convergence
▪ Value estimation

▪ Policy optimisation
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LSPI LSPIf[Lagoudakis and Parr, 2003]
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• Wrong combination (u1,u3): hit at the wrong time
• Right combinations (u1,u2), (u2,u3):     hit at the right time
• All EMGs (u1,u2,u3): hit at the right time with small variance 0.08 

(0.21 for other combinations)



 Optimization methods 

 Need to exploit plant (actuator) dynamics

▪ Direct policy methods allow this 

 Are effective when one has a good estimate of 
costs functions that need optimized

 Imitation and Transfer methods 

 Should not naively mimic impedance profiles 
across heterogeneous systems

 Transfer at the level of objectives most appropriate



 Dr. Matthew Howard
 Dr. David Braun
 Dr. Jun Nakanishi
 Konrad Rawlik
 Dr. Takeshi Mori
 Dr. Djordje Mitrovic

 Evelina Overling
 Alexander Enoch



 My webpage and relevant publications: 

 http://homepages.inf.ed.ac.uk/svijayak

 Our group webpage: 

 http://ipab.inf.ed.ac.uk/slmc




