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THE PROBLEM OF ROBOT

environment

| fulfil about a body that i have to move with my actuators

i have limited knowledge about my body and the

* i constantly have to perform new tasks and in changing

conditions

» i can get information about my movements and their
effects on the environment through my sensors

» motor learning to improve task performance in
interaction with the environment and humans



THE PROBLEM OF ROBOT/HUMAN

| fulfil about a body that i have to move with my actuators

i have limited knowledge about my body and the
environment

i constantly have to perform new tasks and in changing
conditions, e.g. during infancy or with ageing

i can get information about my movements and their
effects on the environment through my sensors

motor learning to improve task performance in
interaction with the environment and humans

WHY DO HUMANS ADAPT MOTION?

+ to manipulate objects we have to interact with the
environment

* reaching, grasping: 150-600ms, delay of visual
feedback: 100-250ms, stretch reflex delay >
30ms

« skilled actions require that humans learn to
compensate for the environmental forces and
instability in a feedforward way

OUTLINE

e motor learning in humans and robots
* |earning in unstable dynamics and noise

e interaction control: from human to robot
to humans

* |earning and generalization




LEARNING STABLE DYNAMICS
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LEARNING CONTROL MODEL
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* by minimising the feedback error

* to adapt the feedforward motor command

[Kawato et al. Biological Cybernetics 1987]

ITERATIVE CONTROL IN ROBOTS (2)

for tasks such as welding or milling, robots

have to follow a trajectory

nonlinear control to perform good trajectory

tracking

compensating for the task dynamics by using
a feedforward term: © = trr + tr

learning: start with tee(t) = 0

H_n_u_A+_A.C = H_n_n_AA._”v + H_nm_A._”v , O<o<1

[Burdet et al. IEEE Control System Magazine 1998]
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ITERATIVE CONTROL IN ROBOTS (1)
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robot follows the trajectory, thus the feedback
is indicative of the task dynamics

o Trrk+1(t) = Trek(t) + o Trek(t) , O<a<l
[Burdet et al. IEEE Control System Magazine 1998]

ITERATIVE CONTROL IN ROBOTS (3)
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* (integrated) tracking error decreases
» feedback torque is reduced to almost 0

[Burdet et al. IEEE Control System Magazine 1998]



ITERATIVE CONTROL IN HUMANS ADAPTIVE CONTROL IN ROBOTS
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* an efficient computational model of motor

learning with good prediction of force and * robots can learn their dynamics in a similar way:
trajectory

(adaptive control: Craig, Slotine, Wen, Horowitz)
[Burdet et al. Biological Cybernetics 2006]

SUMMARY OUTLINE

humans/robots have to learn as they cannot
rely on a model motor learning in humans and robots

when repeating movements in a novel (stable)

: * learning in unstable dynamics and noise
environment, humans gradually compensate for
the interaction force

interaction control: from human to robot

this is well modelled by iterative learning control to humans
... which is an efficient learning strategy to let

robots learn the dynamics of a repeated task * learning and generalization



STIFFNESS ELLIPSE

direction of mechanical impedance,
smallest stiffness .

the resistance to

perturbations, can be

seen as composed of

inertia, damping and

stiffness

.__,mo:o: of

to visualize impedance
using ellipses

stiffness ellipse Na@ i.e. force correspond-
ing to a unit displacement, can be plotted to
visualize stiffness geometry

MOST TASKS WITH TOOLS ARE
UNSTABLE

RN
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chiseling, carving

* instability: motor variability or disturbances
can lead to large errors and unpredictability

* this requires adaptation of force and elasticity
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[Perreault et al. Experimental Brain Research 2004]

IMPORTANCE OF STABILITY

screwdriver /OVH”PQH

/ﬁ chiseling, carving

« stability means repeatability and reliability

« this is required by the brain to plan actions

[Burdet et al. Biological Cybernetics 2006]



MOTOR NOISE TO STUDY UNSTABLE INTERACTIONS
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TO STUDY UNSTABLE INTERACTIONS LEARNING PATTERNS
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DIRECTION SELECTIVE IMPEDANCE
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PRINCIPLES OF MOTOR LEARNING

Change in feedforward command
[% of NF]

Change in feedforward command
[% of NF]

[Franklin et al. J Neuroscience 2008]
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* muscle-based learning
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» feedforward increases with

stretch in previous trial

¢ it also increases with

antagonist muscle stretch

e and decreases when the

error is small

STABILITY MARGIN
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ALGORITHM FOR
TRIAL-BY-TRIAL L

increase of
co-activation

* learning leads to the
same stability margin
~300N/m in all
environments

* movements are
stable and always
have similar deviation

* the brain can plan
actions independently
of the environment
interaction

[Tee et al., Biological Cybernetics 2010]

EARNING

extensor flexor

Y
flexor 2k A m

increase of

change of
motor
command

[Franklin et al. J Neuroscience 2008]

error in previous trial

concurrent minimization of
error and effort while
maintaining a stability margin



COMPUTATIONAL MODEL
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this simple algorithm reproduces the
adaptation observed in experiments

[Franklin et al. J Neuroscience 2008]

simulation with a
2-joint 6-muscles

model

DIRECTION SELECTIVE IMPEDANCE
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[Tee et al., Biological Cybernetics 2010]

EVOLUTION OF
ACTIVATION

DF: unstable

interaction

The model can
predict the trial-by-
trial changes of
muscle activation

VF: stable
interaction

[Franklin et al. J Neuroscience 2008]
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COMPENSATION FOR NOISE (1)

e the amount of motor noise with which the CNS

must contend varies among healthy,

increases

with age and in pathological states such as

cerebellar disorders

* how does neural control adapt to such

differences?

* use our model to compare adaptation under
conditions of different levels of motor noise

[Tee et al., Biological Cybernetics 2010]



COMPENSATION FOR NOISE (2) SUMMARY

* interaction with the environment can create
instability, i.e. when using tools; this amplifies
the motor variability and leads to unpredictability
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e the CNS so produces the same stability margin

independent of the environment
* endpoint stiffness grows with the noise level,

through an increase in the activation of all muscles * this learning can be described with a simple

. . . . algorithm, that correctly predicts the whole
* increase of K.. term is larger in DF than in NF evolution of motor commands, as well as joint/

[Tee et al., Biological Cybernetics 2010] QDQUO_D_“ force and _BUQQNDOQ

AUTOMATIC IMPEDANCE ADAPTATION
OUTLINE

Learning an
Unstable

* motor learning in humans and robots

* |earning in unstable dynamics and noise

Interaction:

e interaction control: from human to robot Screwdriver on an
o humans Inclined Plane

* |earning and generalization

adapts impedance to compensate for instabil



FORCE&IMPEDANCE ADAPTATION

feedforward and feedback provided by muscles
T,(t) == L(t)e(t) — 7(t) — K(t)e(t) — D(t)é(t)

learned feedforward
force and impedance

stability margin ~ —L(t)=(t)
e=é(t)+Te(t), I'=IT>0,
e(r)=q(t)—q,(t), é(t) =4(t)—q,(1)

reference trajectory q{(t), t € [0, T]

[Yang, Ganesh et al. 2011, IEEE T Robotics]

LEARNING: FROM HUMAN TO ROBOT

G Ganesh
DLR, Munich Nov. 2009

\

[Yang et al. IEEE Trans on Robotics 2011]

FORCE&IMPEDANCE ADAPTATION
Tu(1) =~ L(t)e(t) = 7(t) = K(t)e(t) — D(t)e(?)
adaptation of impedance and torque: j-> j+1
K™ (1) = K'(t) + 0k (') (1) = Y (1)K (1))
C''(0) =C'()+0r (e (1) —¥()D'(1))
)

T (0) =7 (1) + 0: (') — Y ()T (1

Lyapunov-like analysis to minimize effort and error
-> stability acquired, convergence to a small set

[Yang, Ganesh et al. 2011, IEEE T Robotics]
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TRAJECTORY ADAPTATION: EXPERIMENT

* when there is an obstacle on
the way, there is adaptation
of trajectory

» our and other groups are
currently performing
psychophysical experiments
to understand the
mechanisms of this
adaptation

Chib et al, J Neurophysiology 2005

TRAJECTORY ADAPTATION: MODELING

To learn: sensor reference trajectory q(t) to
minimize interaction force and motion error:

T 2 . 2
I = [ IF0) I+ la(0) ~ 4" (0)[3 do

planned trajectory g*(t), t € [0,T]

yields the adaptation law

0 ® . . % * .
9. =q , z=(G—-q")+A(g—q")— 1
gl =4 —L7, i=0,1,2,.

[Yang and Burdet, IEEE IROS 2011]

TRAJECTORY ADAPTATION: EXPERIMENT

Chib et al, J Neurophysiology 2005
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TRAJECTORY ADAPTATION: SIMULATION
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ADAPTABLE HUMAN-ROBOT CONTROL

COC T PR R T

position

force

stiffness

[Yang et al. IEEE Trans on Robotics 2011]

MOTOR LEARNING:
in human, for robots, for humans

* using our model as controller, the
rehabilitation robot will tend to
increase the range, provide force and ,_
guidance..

e ... and gradually relax this
assistance as the subject improves

* ongoing implementation on the
BiManuTrack in Berlin (collaboration
with H Schmid, Frauenhofer Institut)

HAPTIC EXPLORATION
straight scanning trajectory @ 4cm depth

robot adapts geometry and impedance to interact
with unknown surface characteristics

MOTOR LEARNING:
in human, for robots, for humans
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assistance and
VR-training

machines

bio-mimetic
algorithms

from human
to robots to humans

GENERALISATION

*, feedforward controller

\m:s_,o::_m:.u

muscle 7 actual

(" arm \movement

planned
movement

e jiterative control lﬁ

Omj _mmq.j o1__< m_O—J@ .# m:o_‘ /:mzﬂmwm_\mﬂvmnx\ \%/ @Tﬁ!
a single trajectory scoiasicy

* to learn performing several distinct movements, it
is necessary to adopt as inverse model a mapping
of the state

e artificial neural network to map the state to the

required muscle activations
[Kadiallah et al., submitted]

OUTLINE

¢ motor learning in humans and robots
* learning in unstable dynamics and noise

e interaction control: from human to robot
to humans

* |earning and generalisation

GENERALISATION

u éﬁb feedforward motor command

Y= (Y1, 0N)T (s) sistate

physical model, (muscle) synergies, differential
equations, central pattern generators, radial
basis functions neural networks:  state (=

space
__m |m,w.__w muscle
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muscle length ,



MINIMIZATION OF FEEDBACK AND
FEEDFORWARD COMMANDS

®, feedforward controller
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environment
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[Kadiallah et al., submitted]

INVERSE MODEL IS STATE DEPENDENT
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[Kadiallah et al., submitted]

INVERSE MODEL IS STATE DEPENDENT

free condition after-effects from after-effects from
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the CNS does not learn by rote memorization,
but forms a state dependent internal model

GENERALIZATION

simulation
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[Kadiallah et al., submitted]

experiments
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A novel motor behaviour for robots

this gave rise to the first model-free controller
for simultaneous adaptation of force,
impedance and trajectory

able to deal with unstable situations typical of
tool use

derived from the minimisation of error and
energy

can learn a large range of dynamics and
generalise in multiple movements

Human learning in unstable environments

e the CNS automatically learns to coordinate
muscles in order to compensate for the
interaction force and instability

¢ this produces movements with the same mean
trajectory and deviation in all environments

* the CNS may rely on this invariance for higher
motor control levels

e this learning was modelled by an adaptive
controller able to predict the evolution of
muscles activation trial after trial

A novel motor behaviour for robots

* particularly suitable for
human-robot interaction,
such as in rehabilitation
and physical training

» compliant force control-
like haptic identification
of unknown surfaces

* ideal to fully utilise the
new possibilities offered
by variable impedance
actuators




