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•
I fulfil about a body that i have to m

ove w
ith m

y actuators

•
i have lim

ited know
ledge about m

y body and the 
environm

ent

•
i constantly have to perform

 new
 tasks and in changing 

conditions, e.g. during infancy or w
ith ageing

‣
i can get inform

ation about m
y m

ovem
ents and their 

effects on the environm
ent through m

y sensors 

‣
m

otor learning to im
prove task perform

ance in 
interaction w

ith the environm
ent and hum

ans  
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•
m

otor learning in hum
ans and robots

•
learning in unstable dynam

ics and noise

•
interaction control: from

 hum
an to robot 

to hum
ans

•
learning and generalization

O
U
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•
to m

anipulate objects w
e have to interact w

ith the 
environm

ent

•
reaching, grasping: 150-600m

s, delay of visual 
feedback: 100-250m

s, stretch reflex delay > 
30m

s 

•
skilled actions require that hum

ans learn to 
com

pensate for the environm
ental forces and 

instability in a feedforw
ard w

ay

W
H

Y D
O

 H
U

M
A

N
S

 A
D

A
P

T M
O

TIO
N

?
haptic interface for neuroscience 

investigation at ATR
 in Japan
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stable 

reaching m
ovem

ents 
in a velocity dependent 

force field (V
F)

null 
field

[Franklin et al. E
xperim

ental B
rain R

esearch 2003]
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  stable 
interaction

stable 
interac
tion

after effects: catch 
trials w

ithout force 
field after learning

stable interaction

st

null 
field

[Franklin et al. E
xperim

ental B
rain R

esearch 2003]
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•
error decreases during learning 

•
w

hile feedforw
ard m

otor com
m

and is adapted 
to counteract the external force

st

st

stable interaction

[Franklin et al. E
xperim

ental B
rain R

esearch 2003]
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•
to adapt the feedforw

ard m
otor com

m
and

•
by m

inim
ising the feedback error

•
an efficient m

odel of m
otor learning

[K
aw

ato et al. B
iological C

ybernetics 1987]

•
for tasks such as w

elding or m
illing, robots have 

to follow
 a trajectory

•
nonlinear control to perform

 good trajectory 
tracking

•
com

pensating for the task dynam
ics by using a 

feedforw
ard term

: ! = !
FF  + !

FB  
•

start w
ith !

FF (t) = 0

•
robot follow

s the trajectory, thus the feedback 
is indicative of the task dynam

ics
•
!

FF k
+1(t) = !

FF k(t) + "
 !

FB k(t) ,  0<"
<1
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[B
urdet et al. IE

E
E

 C
ontrol S

ystem
 M

agazine 1998]
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•
for tasks such as w

elding or m
illing, robots 

have to follow
 a trajectory

•
nonlinear control to perform

 good trajectory 
tracking

•
com

pensating for the task dynam
ics by using 

a feedforw
ard term

: ! = !
FF  + !

FB  

•
learning: start w

ith !
FF (t) = 0

•
!

FF k
+1(t) = !

FF k(t) + "
 !

FB k(t) ,  0<"
<1

[B
urdet et al. IE

E
E

 C
ontrol S

ystem
 M

agazine 1998]
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•
(integrated) tracking error decreases

•
feedback torque is reduced to alm

ost 0

dots: feedforw
ard                    

+ feedback

feedforw
ard 

as solid line

feedback

[B
urdet et al. IE

E
E
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ontrol S

ystem
 M

agazine 1998]



•
an efficient com

putational m
odel of m

otor 
learning w

ith good prediction of force and 
trajectory
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[B
urdet et al. B

iological C
ybernetics 2006]

•
robots can learn their dynam

ics in a sim
ilar w

ay: 
(adaptive control: C

raig, S
lotine, W

en, H
orow

itz)
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•
hum

ans/robots have to learn as they cannot 
rely on a m

odel

•
w

hen repeating m
ovem

ents in a novel (stable) 
environm

ent, hum
ans gradually com

pensate for 
the interaction force 

•
this is w

ell m
odelled by iterative learning control

•
... w

hich is an efficient learning strategy to let 
robots learn the dynam

ics of a repeated task
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•
m

otor learning in hum
ans and robots

•
learning in unstable dynam

ics and noise

•
interaction control: from

 hum
an to robot 

to hum
ans

•
learning and generalization
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E
m

echanical im
pedance, 

the resistance to 
perturbations, can be 
seen as com

posed of 
inertia, dam

ping and 
stiffness

to visualize im
pedance 

using ellipses
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•
stiffness and 
viscosity increase 
w

ith m
uscle 

activation / force 

•
in free m

ovem
ents, 

stability is provided 
by m

uscle visco-
elasticity and 
reflexes

screw
driver

chiseling, carving

•
instability: m

otor variability or disturbances 
can lead to large errors and unpredictability

•
this requires adaptation of force and elasticity
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•
stability m

eans repeatability and reliability

•
this is required by the brain to plan actions

[B
urdet et al. B

iological C
ybernetics 2006]
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[O
’S

ullivan et al. P
los C

om
putational B

iology 2009]

•
noise increases w

ith the 
m

uscle/lim
b force

•
the hum

an m
otor system

 is 
largely affected by noise
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• unstable divergent position dependent force 
field (D

F) to am
plify deviation

• forces diverting  
 

to left  
  

 
            

or to right
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• unstable divergent position dependent force 
field (D

F) to am
plify deviation

•  the C
N

S
 can learn to m

ove 
successfully w

ith instability

•  w
ithout changing force 

[Franklin et al., J of N
euroscience 2007]
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after about 100 trials
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[Franklin et al., J of N
euroscience 2007]
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•  learning leads to the 
sam

e stability m
argin  

~300N
/m

 in all 
environm

ents 

•  m
ovem

ents are 
stable and alw

ays 
have sim

ilar deviation

•  the brain can plan 
actions independently 
of the environm

ent 
interaction

[Tee et al., B
iological C

ybernetics 2010]
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[Franklin et al. J N
euroscience 2008]

•  m
uscle-based learning

•  feedforward increases with 
stretch in previous trial

•  it also increases with 
antagonist m

uscle stretch

•  and decreases when the 
error is sm

all

 
decrease of 
co-activation

 
increase of 
co-activation

 
change of 
m

otor 
com

m
anderror in previous trial

 
flexor

 
extensor

 
    increase of 

 
reciprocal

activation

 
decrease 

 
   of reciprocal 

 
   

activation

A
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G

[Franklin et al. J N
euroscience 2008]

concurrent m
inim

ization of 
error and effort while 

m
aintaining a stability m

argin



 

sim
ulation w

ith a   
2-joint 6-m

uscles 
m

odel

this sim
ple algorithm

 reproduces the 
adaptation observed in experim

ents

C
O
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U
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N
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L M
O

D
E

L

[Franklin et al. J N
euroscience 2008]

The m
odel can 

predict the trial-by- 
trial changes of 
m

uscle activation

[Franklin et al. J N
euroscience 2008]

sim
ulation

hum
an 

sim
ulation

hum
an 

D
F: unstable 

interaction

V
F: stable 

interaction
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[Tee et al., B
iological C

ybernetics 2010]

•  the am
ount of m

otor noise w
ith w

hich the C
N

S
 

m
ust contend varies am

ong healthy, increases 
w

ith age and in pathological states such as 
cerebellar disorders

•  how
 does neural control adapt to such 

differences? 

•  use our m
odel to com

pare adaptation under 
conditions of different levels of m

otor noise

C
O

M
P

E
N

S
ATIO

N
 FO

R
 N

O
IS

E
 (1)

[Tee et al., B
iological C

ybernetics 2010]



•  endpoint stiffness grow
s w

ith the noise level, 
through an increase in the activation of all m

uscles

•  increase of K
xx  term

 is larger in D
F than in N

F

C
O

M
P

E
N

S
ATIO

N
 FO

R
 N

O
IS

E
 (2)

[Tee et al., B
iological C

ybernetics 2010]

•
interaction w

ith the environm
ent can create 

instability, i.e. w
hen using tools; this am

plifies 
the m

otor variability and leads to unpredictability

•
the C

N
S

 autom
atically learns to coordinate 

m
uscles in order to stabilize unstable dynam

ics 

•
the C

N
S

 so produces the sam
e stability m

argin 
independent of the environm

ent

•
this learning can be described w

ith a sim
ple 

algorithm
, that correctly predicts the w

hole 
evolution of m

otor com
m

ands, as w
ell as joint/

endpoint force and im
pedance
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•
m

otor learning in hum
ans and robots

•
learning in unstable dynam

ics and noise

•
interaction control: from

 hum
an to robot 

to hum
ans

•
learning and generalization
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robot adapts im
pedance to com

pensate for instability 
arising from

 the interaction of tools with the environm
ent



feedforw
ard and feedback provided by m

uscles

FO
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C
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&
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P
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D
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N
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P
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[Yang, G
anesh et al. 2011, IE

E
E

 T R
obotics]

reference trajectory q
r(t), t ∈ [0,T] 

stability m
argin

learned feedforw
ard 

force and im
pedance

adaptation of im
pedance and torque: i-> i+1

[Yang, G
anesh et al. 2011, IE

E
E

 T R
obotics]

Lyapunov-like analysis to m
inim

ize effort and error 
-> stability acquired, convergence to a sm

all set
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[Yang et al. IE
E

E
 Trans on R

obotics 2011]

   robot adapts feedforw
ard forc
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C
hib et al, J N

europhysiology 2005

TR
A
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R

Y A
D

A
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TATIO
N

: E
X

P
E

R
IM

E
N

T

•
w

hen there is an obstacle on 
the w

ay, there is adaptation 
of trajectory

•
our and other groups are 
currently perform

ing 
psychophysical experim

ents 
to understand the 
m

echanism
s of this 

adaptation

TR
A

JE
C

TO
R

Y A
D

A
P

TATIO
N

: E
X

P
E

R
IM

E
N

T

average interaction force 

   the subjects seem
ingly m

odify the trajectory to 
apply the sam

e level of force in various conditions

C
hib et al, J N

europhysiology 2005

To learn: sensor reference trajectory q
r(t) to 

m
inim

ize interaction force and m
otion error:

yields the adaptation law

TR
A

JE
C

TO
R

Y A
D

A
P

TATIO
N

: M
O

D
E

LIN
G

planned trajectory q*(t), t ∈ [0,T][Yang and B
urdet, IE

E
E

 IR
O

S
 2011]

1000N
/m

stiffness: 200N
/m

TR
A

JE
C

TO
R

Y A
D

A
P

TATIO
N

: S
IM

U
LATIO

N

force against the surface

[Yang and B
urdet, IE

E
E

 IR
O

S
 2011]
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position

force

stiffness

[Yang et al. IE
E

E
 Trans on R

obotics 2011]

H
A

P
TIC

 E
X

P
LO

R
ATIO

N
                               

straight scanning trajectory @
 4cm

 depth

   robot adapts geom
etry and im

pedance to interact 
w

ith unknow
n surface characteristics

•  using our m
odel as controller, the 

rehabilitation robot will tend to 
increase the range, provide force and 
guidance...

•  ... and gradually relax this 
assistance as the subject im

proves

•  ongoing im
plem

entation on the 
BiM

anuTrack in Berlin (collaboration 
with H Schm

id, Frauenhofer Institut)

M
O

TO
R LEARNING

:         
 in hum

an, for robots, for hum
ans

M
O

TO
R LEARNING

:         
 in hum

an, for robots, for hum
ans



assistance and 
V

R
-training

bio-m
im

etic 
algorithm

s

i

from
 hum

an 
to rob

ots to hum
ans

control and m
onitoring 

of hum
an experim

ents

•
m

otor learning in hum
ans and robots

•
learning in unstable dynam

ics and noise

•
interaction control: from

 hum
an to robot 

to hum
ans

•
learning and generalisation

O
U
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•  to learn perform
ing several distinct m

ovem
ents, it 

is necessary to adopt as inverse m
odel a m

apping 
of the state

•  artificial neural netw
ork to m

ap the state to the 
required m

uscle activations

G
E

N
E

R
A

LIS
ATIO

N

•  iterative control 
can learn only along 
a single trajectory

[K
adiallah et al., subm

itted]

G
E

N
E

R
A

LIS
ATIO

N

physical m
odel, (m

uscle) synergies, differential 
equations, central pattern generators, radial 
basis functions neural netw

orks:

feedforw
ard m

otor com
m

and

s: state

m
uscle length

m
uscle 

length 
velocity

state 
space
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[K
adiallah et al., subm

itted]
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free condition

 
after-effects from

 
training w

ith circles  
after-effects from

 
training w

ith 
reaching m

vts

 
initial exposure to 
the force field V

F
 

efficiency of training 
w

ith circles
 

transfer of learning 
from

 reaching 
m

ovem
ents

 
the C

N
S

 does not learn by rote m
em

orization, 
but form

s a state dependent internal m
odel
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after-effects from
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vts
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the force field V

F
 

efficiency of 
training w

ith circles

 
transfer of learning 
from

 reaching 
m

ovem
ents

G
E

N
E

R
A

LIZATIO
N

[K
adiallah et al., subm

itted]

sim
ulation

experim
ents

exper



G
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N
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R
A

LIZATIO
N

[K
adiallah et al., subm

itted]

•
the C

N
S

 autom
atically learns to coordinate 

m
uscles in order to com

pensate for the 
interaction force and instability 

•
this produces m

ovem
ents w

ith the sam
e m

ean 
trajectory and deviation in all environm

ents

•
the C

N
S

 m
ay rely on this invariance for higher 

m
otor control levels

•
this learning w

as m
odelled by an adaptive 

controller able to predict the evolution of 
m

uscles activation trial after trial

H
um

an learning in unstable environm
ents

•
this gave rise to the first m

odel-free controller 
for sim

ultaneous adaptation of force, 
im

pedance and trajectory

•
able to deal w

ith unstable situations typical of 
tool use

•
derived from

 the m
inim

isation of error and 
energy

•
can learn a large range of dynam

ics and 
generalise in m

ultiple m
ovem

ents  

A novel m
otor behaviour for robots

A novel m
otor behaviour for robots

•
particularly suitable for 
hum

an-robot interaction, 
such as in rehabilitation 
and physical training

•
com

pliant force control-
like haptic identification 
of unknow

n surfaces
•

ideal to fully utilise the 
new

 possibilities offered 
by variable im

pedance 
actuators


