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19.1 Introduction: Controlling Mechanical Interaction

Mechanical interaction with objects is arguably one of the fundamentally important robot behaviors. Many
current robot applications require it; for example, mechanical interaction is essential for manipulation, the
core task of assembly systems. Future robot applications, such as versatile use of tools or close cooperation
with humans, may be enabled by improved control of mechanical interaction.

Interaction with the environment may serve sensory or motor functions (or both), and the most
appropriate mechanical interaction is different for sensory or motor tasks. Mechanical interaction dynamics
may be characterized by mechanical impedance, which may loosely be considered a dynamic extension
of stiffness.1 Lower mechanical impedance reduces interaction forces due to encountering an unpredicted
object, thereby protecting both the robot and any object it manipulates (interaction forces on each being

1Conversely, mechanical admittance may be considered a dynamic generalization of compliance. A more rigorous
definition is provided below.
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opposite but equal). Using a human analogy, by this reasoning, tactile exploration and manipulation
of fragile objects should evoke the use of our lowest-impedance limb segments, and while we can (and
routinely do) interact with objects using other body parts (the elbow, the knee, the foot, etc.), we naturally
tend to use our fingers for gentle, delicate tasks.

Conversely, wielding an object as a tool often requires it to be stabilized and that requires higher
mechanical impedance. This is especially important if the interaction between the manipulator and the
object is destabilizing, as is the case for many common tools. Again using a human analogy, consider,
for example, the simple task of pushing on a surface with a rigid stick. If force is exerted on the stick
normal to the surface, then the stick is statically unstable; small displacements from the configuration in
which stick axis and force vector co-align result in torques that act to drive the stick further from that
configuration. Success at this task requires a stabilizing mechanical impedance, and because pushing harder
exacerbates the problem (the magnitude of the destabilizing torque is proportional to the applied force),
the minimum required impedance grows with the force applied; see Rancourt and Hogan (2001) for a
detailed analysis. Simple though this task may be, it is an essential element of the function of many tools
(e.g., screwdrivers, power drills) and any manipulator — human or robotic — must provide a stabilizing
mechanical impedance to operate them.

In other applications the robot’s interactive behavior may be the main objective of control. For example,
to use a robot to serve as a force-reflecting haptic display (Miller et al., 2000) or to deliver physiotherapy
(Volpe et al., 2000) requires intimate physical interaction with humans. In these applications the “feel” of
the robot becomes an important performance measure, and “feel” is determined by mechanical interaction
dynamics. Versatile interaction with objects (whether tools or humans or other robots), therefore, requires
an ability to modulate and control the dynamics of interaction.

19.1.1 The Effect of Interaction on Performance and Stability

When interaction occurs, the dynamic properties of the environment are important. If we attempt to control
motion or force, interaction affects the controlled variable, introducing error upon which the controller
must act. Errors clearly mar performance but even more importantly, though perhaps less obvious, stability
may also be compromised. That is, a system that is stable in isolation can become unstable when coupled
to an environment that is itself stable. Such instabilities, known as coupled or contact instabilities, appear
even in simple systems with basic controllers contacting simple environments. To illustrate this key point
consider the following examples.

Example 19.1

The first example is based on a common design for a robot motion controller. One of the simplest models
of a robot is depicted in Figure 19.1. A single mass m represents the robot’s inertial properties. It is subject

m
Fe

Fa

b

x

FIGURE 19.1 Model with inertial, frictional, actuator, and environmental forces.
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to actuator forces Fa and environmental forces Fe . A single damper b connected to ground represents
frictional losses. The Laplace-transformed equation of motion for this simple model is as follows:

(ms 2 + bs )X = Fa + Fe (19.1)

where X is the Laplace transform of the mass position x . A proportional-integral motion controller is
applied

Fa = K p(R − X) + K I

s
(R − X) (19.2)

where R is the Laplace transform of the reference position and K p and K I are proportional and integral
gains, respectively. In isolation, Fe = 0 and the closed-loop transfer function is

X

R
= K ps + K I

ms 3 + bs 2 + K P s + K I
(19.3)

From the Routh-Hurwitz stability criterion, a condition for isolated stability is the following upper bound
on the integral gain:

K I <
bK P

m
(19.4)

However, this condition is not sufficient to ensure that the robot will remain stable when it interacts with
objects in its environment. Even the simple act of grasping an object may be destabilizing. If the system
is not isolated, and instead is coupled to a mass me , this is equivalent to increasing the mass from m to
(m + me ). Hence a condition for stability of the coupled system is

K I <
bK P

(m + me )
(19.5)

Any controller that satisfies Equation (19.4) results in a stable isolated system. Prudent controller design
would use a lower integral gain than the marginal value, providing robustness to uncertainty about system
parameters and perhaps improved performance. However, for any fixed controller gains, coupling the
robot to a sufficiently large me will violate the condition for stability. Interaction with a large enough mass
can always destabilize a system that includes integral-action motion control, even if that system is stable
in isolation.

This difficulty may be obscured by the facts that, at present, most robots have inertia far exceeding that
of the payloads they may carry, the total mass m + me is not much greater than the mass m of the robot
alone, and the bounds of Equation (19.4) and Equation (19.5) are similar. However, in some applications,
e.g., in space or under water, a robot need support little or none of a payload’s weight, and objects of
extremely large mass may be manipulated. In these situations the vulnerability of integral-action motion
control to coupled instability may become an important consideration.

Example 19.2

The second example illustrates one of the common difficulties of force control. A robot with a single
structural vibration mode is represented by the model shown in Figure 19.2. Two masses m1 and m2 are
connected by a spring of stiffness k. Frictional losses are represented by dampers b1and b2 connected from
the masses to ground and damper b3 in parallel with the spring. One mass is driven by the actuator force
Fa and the other is subject to Fe , an interaction force with the environment.

A proportional-derivative (PD) controller acting on the error between the position of the mass at the
actuator x1 and a reference r is applied to control motion. A proportional controller acting on force fed
back from the environment is applied to control force and improve interactive behavior. The control law
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FIGURE 19.2 Model including a single structural resonance.

is as follows:

Fa = K (r − x1) + B(ṙ − ẋ1) + K f (Fe + K (r − x1) + B(ṙ − ẋ1)) (19.6)

where K and B are related to the proportional and derivative motion feedback gains, respectively, and K f

is the proportional force feedback gain.2 When the system is isolated from any environment, Fe = 0 and
Equation (19.6) reduces to PD motion control. Using the Routh-Hurwitz criterion, the isolated system’s
closed-loop characteristic polynomial can be shown to have all its poles in the open left half plane, providing
at worst marginal stability for arbitrary nonnegative real parameters and controller gains.

If the system is not isolated but instead is connected to a spring to ground, such that Fe = −ke x2, the
closed loop characteristic polynomial is changed. It is now easy to find parameters such that this polynomial
has right-half-plane roots. For example, if m1 = m2 = 10, b1 = b2 = b3 = 1, k = 100, K = 10, B = 1,
K f = 10, and ke = 100, the closed loop poles are at −2.78 ± 5.51i and 2.03 ± 5.53i , where the latter
pair are unstable. Once again, a system that is stable when isolated (corresponding to ke = 0) is driven to
instability when coupled to an object in its environment, in this case, a sufficiently stiff spring (ke = 100).

Structural vibrations are a common feature of robot dynamics and present a substantial challenge to
controller design. Though simple, the PD motion controller in this example has the merit that it is not
destabilized by structural vibration because the actuator and assumed motion sensor are co-located.3

However, the addition of a force feedback loop renders the robot control system vulnerable to coupled
instability. In part this is because the actuator and force sensor are not co-located. Given the difficulty of
designing a robot with no significant dynamics interposed between its actuators and the points at which
it contacts its environment (see Tilley and Cannon, 1986, Sharon et al., 1988), the simple model in this
example represents a common situation in robot interaction control, and we will return to this model
several times in this chapter.

These two examples show that to ensure stability when interacting even with simple environments, it
is not sufficient to design for stability of the manipulator in isolation. The environment’s dynamics must
also be considered — dynamics that are generally not known exactly. Furthermore, in many applications a
robot must be capable of stable interaction with a variety of environments. For example, an assembly robot
might pick up a component, move it across free space, bring it into contact with a kinematic constraint
used to guide placement of the component, move it along the constraint, release the component, and
return to get another. In this case, at different times in the process, the robot must remain stable when
moving unloaded in free space, moving to transport the component, and moving to comply with the
kinematic constraint. Each of these three contexts poses a different stability challenge which illustrates one

2This controller is discussed further below in the section on force feedback.
3An alternative interpretation is presented below in the section on simple impedance control.
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key reason why, even if the environment can be closely modeled, there are strong benefits to designing a
controller that is insensitive to ignorance of its properties. If, for example, a different controller is required
for each of the three contexts, the system must decide which controller to use at each instant and manage
the transition between them. Usually the easiest way to identify the environment is to interact with it; thus,
interaction might be required before the appropriate controller is in place. Stable interaction is needed to
identify the environment, but stability cannot be guaranteed without a well-characterized environment.
A single controller that can perform satisfactorily within all expected contexts without compromising
stability would have significant advantages.

19.1.2 Interaction as Disturbance Rejection

Control theory offers several tools to endow controllers with the ability to deal with unknown or poorly
characterized interference (Levine, 1996). Using a disturbance rejection approach, the environment’s
dynamics could be included as disturbance forces. The success of this approach depends on bounding the
disturbance forces, but for many interactive applications the environmental forces may equal or exceed
the robot’s nominal capacity; for example, a kinematic constraint can introduce arbitrarily large forces
depending on the robot’s own behavior. Furthermore, environmental forces generally depend on the robot’s
state, and traditionally disturbances are assumed to be state-independent. Thus, treating interaction as a
disturbance rejection problem does not seem promising.

19.1.3 Interaction as Modeling Uncertainty

Modeling the environment as an uncertain part of the robot and using robust control tools (Levine, 1996) to
guarantee stability is another reasonable approach. Interacting with an environment effectively changes the
robot plant by adding some combination of elastic, dissipative, and inertial properties, perhaps including
kinematic constraints. If the effect of interaction is only to alter the parameters of the robot model (e.g., by
adding to the endpoint mass) a robust control approach may succeed, though robustifying the system to a
large range of environment parameters might require an unacceptable sacrifice of performance. However,
interaction may change the structure of the model. For example, it may reduce the order of the system (e.g.,
moving from free motion to contact with a kinematic constraint reduces the degrees of freedom of the parts
contacting the constraint) or increase it (e.g., contact with an elastic object adds a new mode of behavior
due to interaction between the robot inertia and the object elasticity). If interaction changes the model
structure, the applicability of a robust control approach is unclear. For example, the environment forces and
motions may be of the same magnitude and in the same frequency range as the known robot dynamics.4

As robust control methods commonly assume that uncertain dynamics lie outside the frequency range of
interest, treating interaction as a robustness problem does not seem promising.

As mentioned above, in some applications the robot’s dynamic behavior (colloquially termed its “feel”)
may be a key performance measure and hence a legitimate objective of control system design. Rather than
attempt to overwhelm the consequences of interaction by building in robustness, the approach described
herein aims to regulate the interaction itself by controlling the robot’s dynamic behavior at the places
where it interacts with its environment.

19.2 Regulating Dynamic Behavior

The general approach here termed “interaction control” refers to regulation of the robot’s dynamic behavior
at its ports of interaction with the environment. An interaction port is a place at which energy may be
exchanged with the environment. It is therefore defined by a set of motion and force variables such that

4To use a human example, consider two people shaking hands: each has a similar response speed or bandwidth
and produces comparable force and motion; each individual control system is coupled to a system with approximately
double the large number of degrees of freedom that it controls when isolated.
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TABLE 19.1 Laplace-Transformed Impedance and
Admittance Functions for Common Mechanical
Elements
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P = F t v , where v is a vector of velocities (or angular velocities) along different degrees of freedom at the
contact point, F is a corresponding vector of forces (or torques), and P is the power that flows between
robot and environment.5 Interaction control involves specifying a dynamic relationship between motion
and force at the port, and implementing a control law that attempts to minimize deviation from this
relationship.

19.2.1 Mechanical Impedance and Admittance

The most common forms of interaction control regulate the manipulator’s impedance or admittance.
Assuming force is analogous to voltage and velocity is analogous to current, mechanical impedance is
analogous to electrical impedance, characterized by conjugate variables that define power flow, and defined
as follows.

Definition 19.1 Mechanical impedance at a port (denoted Z) is a dynamic operator that determines
an output force (torque) time function from an input velocity (angular velocity) time function at the
same port. Mechanical admittance at a port (denoted Y ) is a dynamic operator that determines an output
velocity (angular velocity) time function from a force (torque) time function at the same port.

The terms “driving point impedance” or “driving point admittance” are also commonly used. Because
they are defined with reference to an interaction port, impedance and admittance are generically referred
to as “port functions.”

If the system is linear, admittance is the inverse of impedance, and both can be represented in the Laplace
domain by transfer functions, Z(s ) or Y (s ). Table 19.1 gives example admittances and impedances for
common mechanical elements. For a linear system impedance can be derived from the Laplace-transformed
dynamic equations by solving for the appropriate variables.

While most often introduced for linear systems, impedance and admittance generalize to nonlinear
systems. In the nonlinear case, using a state-determined representation of system dynamics, mechanical
impedance may be described by state and output equations relating input velocity (angular velocity) to
output force (torque) as follows.

5Equivalently, an interaction port may be defined in terms of “virtual work,” such that dW = F t dx where dx is
a vector of infinitesimal displacements (or angular displacements) along different degrees of freedom at the contact
point, F is a corresponding vector of forces (or torques), and dW is the infinitesimal virtual work done on or by the
robot.
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ż = Zs (z, v)
F = Zo(z, v)
P = F t v

(19.7)

where z is a finite-dimensional vector of state variables and Zs ( ) and Zo( ) are algebraic (or memoryless)
functions. The only difference from a general state-determined system model is that the input velocity and
output force must have the same dimension and define by their inner product the power flow into (or out
of) the system.

In the nonlinear case, mechanical admittance is the causal6 dual of impedance in that the roles of input
and output are exchanged; mechanical admittance may be described by state and output equations relating
input force (torque) to output velocity (angular velocity). However, mechanical admittance may not be
the inverse of mechanical impedance (and vice versa) as the required inverse may not be definable. Some
examples of nonlinear impedances and admittances with no defined inverse forms are presented by Hogan
(1985).

A key point to note is that, unlike motion or force, the dynamic port behavior is exclusively a property
of the robot system, independent of the environment at that port. This is what gives regulating impedance
or admittance its appeal. Motion and force depend on both robot and environment as they meet at an
interaction port and cannot be described or predicted in the absence of a complete characterization of both
systems. Indeed, this is the principal difficulty, as illustrated above, in regulating either of these quantities.
Impedance, on the other hand, can (in theory) be held constant regardless of the environment; impedance
defines the relationship between the power variables and does not by itself determine either.

Impedance serves to completely describe how the manipulator will interact with a variety of environ-
ments. In principle, if arbitrary impedance can be achieved, arbitrary behavior can be achieved; it remains
only to sculpt the impedance to yield the desired behavior. Of course, as with all controller designs, the
goal of achieving a desired impedance is an ideal; in practice, it can be difficult. The problem of achieving
a desired impedance (or admittance) is central to the study of interaction control and is discussed in
Section 19.4 and Section 19.5.

19.2.2 Port Behavior and Transfer Functions

Port impedance and admittance are just two of the possible representations of a linear system’s response,
and it is important to highlight the distinction between these expressions and general input/output transfer
functions. By way of example, consider again the system in Figure 19.2. This system is an example of a
“2-port” because it has two power interfaces, one characterized by Fa and ẋ1, the other by Fe and ẋ2. If such
an element is part of a robot, one side is generally connected to an actuator and the other to a downstream
portion of the robot or directly to the environment. Any mechanical 2-port has four transfer functions
relating motion to force. Two of them, Fa

Ẋ2
(s ) and Fe

Ẋ1
(s ) (or their inverses), are input/output transfer

functions and define the force produced by motion at the opposite port, assuming certain boundary
conditions to determine the other power variables. This type of transfer function is used in traditional
block-diagram analysis; if the left port is driven by a controllable force and the right uncoupled, then Ẋ2

Fa
(s )

describes the motion of the right port as a result of actuator force, as shown in Figure 19.3. The other
two transfer functions, Fa

Ẋ1
(s ) and Fe

Ẋ2
(s ), each represent the impedance at a port (and their inverses the

corresponding admittance), depending on the boundary conditions at the other port.
The principal distinction between these two types of transfer functions is in their connection. If we

have two systems like that shown in Figure 19.2, their input/output transfer functions cannot be properly

6The causal form (or causality) of a system’s interaction behavior refers to the choice of input and output variables.
By convention, input variables are referred to as “causing” output variables, though the physical system equations need
not describe a causal relation in the usual sense of a temporal order; changes of input and output variables may occur
simultaneously.
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Fa

Fa

x2 x2 x21
s

FIGURE 19.3 Block diagram of a forward-path or transmission transfer function.

connected in cascade because the dynamics of the second system affect the input-output relationship of the
first. At best, cascade combination of input/output transfer functions may be used as an approximation if
the two systems satisfy certain conditions, specifically that the impedance (or admittance) at the common
interaction port are maximally mismatched to ensure no significant loading of one system by the other.

19.3 Analyzing Coupled Systems

To analyze systems that are coupled by interaction ports, it is helpful to consider the causality of their
interaction behavior, that is, the choice of input and output for each of the systems. The appropriate
causality for each system is constrained by the nature of the connection between systems, and in turn
affects the mathematical representation of the function that describes the system. Power-based network
modeling approaches (such as bond graphs [Brown, 2001]) are useful, though not essential, to understand
this important topic.

19.3.1 Causal Analysis of Interaction Port Connection

Figure 19.4 uses bond graph notation to depict direct connection of two mechanical systems, S1 and
S2, such that their interaction ports have the same velocity (the most common connection in robotic
systems), denoted by the 1 in the figure. If we choose to describe the interaction dynamics of one system
as an impedance, causal analysis dictates that the other system must have admittance causality. The causal
stroke indicates that S1 is in impedance causality; in other words, S1 takes motion as an input and
produces force output, and S2 takes force as an input and produces motion output. If we use the common
sign convention that power flow is positive into each system (denoted by the half arrows in the figure) this
is equivalent to a negative feedback connection of the two power ports, as shown in Figure 19.5.

More complicated connections are also possible. Consider three mechanical systems connected such
that their common interaction ports have the same velocity (e.g., consider two robots S3 and S4 pushing

S2S1 1

x
.
..

FIGURE 19.4 Bond graph representation of two systems connected with common velocity.

S1

S2

F

x
–1

FIGURE 19.5 Feedback representation of two systems connected with common velocity.
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S5

S4

S3

1

FIGURE 19.6 Bond graph representation of three systems connected with common velocity.

on the same workpiece S5). Figure 19.6 shows a bond graph representation. If we choose to describe
the workpiece dynamics as an admittance (and this may be the only option if the workpiece includes a
kinematic constraint) then causal analysis dictates that the interaction dynamics of the two robots must
be represented as impedances. Once again, this connection may be represented by feedback network. S3

and S4 are connected in parallel with each other and with the workpiece S5 in a negative feedback loop,
as shown in Figure 19.7. Note that S3 and S4 can be represented by a single equivalent impedance, and
the system looks like that in Figure 19.4 and Figure 19.5. S3 and S4 need not represent distinct pieces of
hardware and, in fact, might represent superimposed control algorithms acting on a single robot (Andrews
and Hogan, 1983; Hogan, 1985).

19.3.2 Impedance vs. Admittance Regulation

Causal analysis provides insight into the important question whether it is better to regulate impedance
or admittance. For most robotics applications, the environment consists primarily of movable objects,
most simply represented by their inertia and surfaces or other mechanical structures that kinematically
constrain their motion. The interaction dynamics in both cases may be represented as an admittance. An
unrestrained inertia determines acceleration in response to applied force, yielding a proper admittance
transfer function (see Table 19.1). A kinematic constraint imposes zero motion in one or more directions
regardless of applied force; it does not admit representation as an impedance. Inertias prefer admittance
causality; kinematic constraints require it. Because the environment has the properties best represented

+

S3

S4

S5–1

FIGURE 19.7 Feedback representation of three systems connected with common velocity.
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as an admittance, the ideal robot behavior is an impedance, which can be thought of as a dynamic
generalization of a spring, returning force in response to applied displacement. Initially assuming that
arbitrary port impedance could be achieved, Hogan argued for this approach (Hogan, 1985).

However, most robots consist of links of relatively large mass driven by actuators. If the actuators
are geared to amplify motor torque (a common design), the total inertia apparent at the end effector is
increased by the reflected inertia of the motor; indeed for high gear ratios this can dwarf the mass of the
links. These inertial properties are difficult to overcome (see Section 19.5.2), and tend to dominate the
robot’s response. Thus it is difficult to make a robot behave as a spring (or impedance), and it is usually
more feasible to make it behave as primarily a mass (or admittance), an argument for admittance control
(Newman, 1992). In other words, impedance behavior is usually ideal, but admittance behavior is often
more easily implemented in real hardware, which itself prefers admittance causality because of its inertial
nature. The choice of particular controller structure for an application must be based on the anticipated
structure of environment and manipulator, as well as the way that they are coupled.

19.3.3 Coupled System Stability Analysis

If S1 and S2 are a linear time-invariant impedance and admittance, respectively, Figure 19.4 and Figure 19.5
depict the junction of the two systems via a power-continuous coupling. In other words the coupling is
lossless and does not require power input to be implemented; all power out of one system goes into the
other. Colgate has demonstrated the use of classical feedback analysis tools to evaluate the stability of
this coupled system, using only the impedance and admittance transfer functions (Colgate, 1988; Colgate
and Hogan, 1988). By interpreting the interaction as a unity negative feedback as shown in Figure 19.5,
Bode and/or Nyquist frequency response analysis can be applied. The “open-loop” transfer function in
this case is the product of admittance and impedance S1 S2. Note that unlike the typical cascade of transfer
functions, this product is exact, independent of whether or how the two systems exchange power or “load”
each other. The Nyquist stability criterion ensures stability of the coupled (closed-loop) system if the net
number of clockwise encirclements of the −1 point (where magnitude = 1 and phase angle = ±180◦) by
the Nyquist contour of S1( jω)S2( jω) plus the number of poles of S1( jω)S2( jω) in the right half-plane
is zero. The slightly weaker Bode condition ensures stability if the magnitude |S1( jω)S2( jω)| < 1 at any
point where 	 (S1( jω)S2( jω) = 	 S1( jω) + 	 S2( jω) = ±180◦.

19.3.4 Passivity and Coupled Stability

This stability analysis requires an accurate representation of the environment as well as the manipulator,
something that we have argued is difficult to obtain and undesirable to rely upon. The principles of this
analysis, however, suggest an approach to guarantee stability if the environment has certain properties —
particularly if the environment is passive.

There are a number of definitions of a system with passive port impedance, all of which quantify the
notion that the system cannot, for any time period, output more energy at its port of interaction than has
in total been put into the same port for all time. Linear and nonlinear systems can have passive interaction
ports; here we restrict ourselves to the linear time-invariant case and use the same definition as Colgate
(1988). For nonlinear extensions, see Wyatt et al. (1981) and Willems (1972).

Definition 19.2 A system defined by the linear 1-port7 impedance function Z(s ) is passive iff:

1. Z(s ) has no poles in the right half-plane.
2. Any imaginary poles of Z(s ) are simple, and have positive real residues.
3. Re{Z(jω)}≥ 0.

7An extension to multi-port impedances and admittances is presented in Colgate (1988).
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These requirements ensure that Z(s ) is a positive real function and lead to the following interesting and
useful extensions:

1. If Z(s )is positive real, so is its inverse, the admittance function Y (s ) = Z−1(s ), and Y (s ) has the
same properties.

2. If equality is restricted from condition 3, the system is dissipative and is called strictly passive.
a. The Nyquist contours of Z(s ) and Y (s ) each lie wholly within the closed right half-plane.
b. Z(s ) and Y (s ) each have phase in the closed interval between −90◦ and +90◦.

3. If condition 3 is met in equality, the system is passive (but not strictly passive).
a. The Nyquist contours of Z(s ) and Y (s ) each lie wholly within the open right half-plane.
b. Z(s ) and Y (s ) each have phase in the open interval between −90◦ and +90◦.

Note that pure masses and springs, as shown in Table 19.1, are passive but not strictly passive. Pure
dampers are strictly passive, as they have zero phase. Furthermore, any collection of passive elements
(springs, masses, dampers, constraints) assembled with any combination of power-continuous connections
is also passive. Passive systems comprise a broad and useful set, including all combinations of mechanical
elements that either store or dissipate energy without generating any — even when they are nonlinear.
Passivity and related concepts have proven useful for other control system applications, including robust
and adaptive control (Levine, 1996).

Colgate has shown that the requirement for a manipulator to interact stably with any passive envi-
ronment is that the manipulator itself be passive (Colgate, 1988; Colgate and Hogan, 1988). The proof
is described here intuitively and informally. If two passive systems are coupled in the power-continuous
way described above and illustrated in Figure 19.4, the phase property of passive systems constrains the
total phase of the “open-loop” transfer function to between −180◦ and +180◦ (the phase of each of
the two port functions is between −90◦ and +90◦, and the two are summed). Because the phase never
crosses these bounds, the coupled system is never unstable and is at worst marginally stable. This holds
true regardless of the magnitudes of the port functions of both systems. In the Nyquist plane, as shown
in Figure 19.8, since the total phase never exceeds 180◦, the contour cannot cross the negative real axis,
and therefore can never encircle −1, regardless of its magnitude. This result shows that if a manipulator
can be made to behave with passive driving point impedance, coupled stability is ensured with all passive
environments, provided the coupling obeys the constraints applied above. The magnitude of the port
functions is irrelevant; if passivity (and therefore the phase constraint) is satisfied, the coupled system
is stable. The indifference to magnitude also means that requiring a robot to exhibit passive interaction
behavior need not compromise performance; in principle the system may be infinitely stiff or infinitely
compliant.

It is worthy of mention that if either of the two systems is strictly passive, the total phase is strictly
less than ±180◦, and the coupled system is asymptotically stable. Different types of coupling can produce
slightly different results. If the act of coupling requires energy to be stored or if contact is through a
mechanism such as sliding friction, local asymptotic stability may not be guaranteed. However, the cou-
pled system energy remains bounded. This result follows from the fact that neither system can generate
energy or supply it continuously; the two can only pass it back and forth and the total energy can never
grow.

Example 19.3

Because both examples presented at the start of this paper were unstable when interacting with passive
elements, both systems must be nonpassive. This is in fact true; for the second case, for example, Figure 19.9
shows the real part of the port admittance, evaluated as a function of frequency, and it is clearly negative
between 2 and 10 rad/sec, hence violates the third condition for passivity.

Colgate has proven another useful result via this argument, particularly helpful in testing for coupled
stability of systems. As can easily be determined from Table 19.1, an ideal spring in admittance causality
produces +90◦ of phase, and an ideal mass produces −90◦, both for all frequencies, making each passive
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but not strictly passive. If the manipulator is nonpassive, its phase must necessarily exceed either −90◦

or +90◦ at some frequency, so that coupling it to a pure spring or a pure mass results in phase that
exceeds −180◦ or +180◦ at that frequency. The value of the environmental stiffness or mass acts as a
gain and can be selected such that the magnitude exceeds 1 at a frequency where the phase crosses the
boundary, proving instability by the Bode criterion. Alternatively by the Nyquist criterion, the gain expands
or contracts the contour, and can be selected so as to produce an encirclement of the −1 point. Conversely,
it is impossible for the manipulator to be unstable when in contact with any passive environment if it does
not become unstable when coupled to any possible spring or mass. Thus the passivity of a manipulator can
theoretically be evaluated by testing stability when coupled to all possible springs and masses. If no spring
or mass destabilizes the manipulator, it is passive. Much can be learned about a system by understanding
which environments destabilize it (Colgate, 1988; Colgate and Hogan, 1988).

Example 19.4

The destabilizing effect of springs or masses can be observed by examining the locus of a coupled system’s
poles as an environmental spring or mass is changed. Figure 19.10 shows the poles of a single-resonance
system (as in Example 19.2) coupled to a mass at the interaction port, as the magnitude of the mass is
varied from 0.1 to 10 kg. The system remains stable. Figure 19.11 shows the coupled system poles as a
stiffness connected to the interaction port is varied from 1 to 150 N/m. When the stiffness is large, the
system is destabilized.
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FIGURE 19.10 Locus of coupled system poles for the system from Example 19.2 as environment mass increases.
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FIGURE 19.11 Locus of coupled system poles for the system from Example 19.2 as environment stiffness increases.

19.4 Implementing Interaction Control

Like any control system, a successful interactive system must satisfy the twin goals of stability and perfor-
mance. The preceding sections have shown that stability analysis must necessarily include a consideration
of the environments with which the system will interact. It has further been shown that stability can in
principle be assured by sculpting the port behavior of the system. Performance for interactive systems is
also measured by dynamic port behavior, so both objectives can be satisfied in tandem by a controller that
minimizes error in the implementation of some target interactive behavior. For this approach to work for
manipulation, any controller must also include a way to provide a motion trajectory. The objectives of
dynamic behavior and motion can, to some degree, be considered separately.

19.4.1 Virtual Trajectory and Nodic Impedance

Motion is typically accomplished using a virtual trajectory, a reference trajectory that specifies the desired
movement of the manipulator. A virtual trajectory is much like a motion controller’s nominal trajectory,
except there is no assumption that the controlled machine’s dynamics are fast in comparison with the
motion, which is usually required to ensure good tracking performance. The virtual trajectory specifies
which way the manipulator will “push” or “pull” to go, but actual motion depends on its impedance
properties and those of the environment. It is called “virtual” because it does not have to be a physically
realizable trajectory.
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FIGURE 19.12 Virtual trajectory vo and nodic impedance. v is the interaction port velocity.

Deviation in the manipulator’s trajectory from its virtual trajectory produces a force response that
depends on the interactive properties of the manipulator, its nodic8 impedance/admittance. If the robot
is represented as a mass subjected to actuator and environmental forces (similar to the simple model
of Example 19.1 above) and the nodic impedance of the controller is a parallel spring and damper, the
resulting behavior is as pictured in Figure 19.12 in which vo represents the virtual trajectory and v the
actual manipulator motion. In many applications, the controller will be required to specify manipulator
position x and to be consistent, the virtual trajectory must also be specified as a position xo . In that case,
the noninertial (nodic) behavior is strictly described as a dynamic operator that produces output force in
response to input displacement (the difference between virtual and actual positions, �x = xo − x), which
might be termed a “dynamic stiffness.” However, the term “impedance” is loosely applied to describe either
velocity or displacement input. To the interaction port, the system behaves as a mass with a spring and
damper, connecting the port to some potentially moving virtual trajectory. The dynamics of the spring,
mass, and dashpot are as much a part of the prescribed behavior as is the virtual trajectory, distinguishing
this strategy from motion control.

19.4.2 ‘‘Simple’’ Impedance Control

One primitive approach to implementing impedance control, proposed by Hogan (1985), has been used
with considerable success. Termed “simple” impedance control, it consists of driving an intrinsically low-
friction mechanism with force- or torque-controlled actuators, and using motion feedback to increase
output impedance. This approach makes no attempt to compensate for any physical impedance (mass,
friction) in the mechanism, so the actual output impedance consists of that due to the controller plus that
due to the mechanism.

If a robot is modeled as a multi-degree-of-freedom inertia retarded by damping and subject to actuator
and environmental torques (a multi-degree-of-freedom version of the model used in example 1 above),
the robot with the simple impedance controller is as follows:

I (�)�̈ + C(�, �̇) + D(�̇) = Ta + Te (19.8)

where � is a vector of robot joint variables (here assumed to be angles, though that is not essential), I
is the robot inertia matrix (which depends on the robot’s pose), C denotes nonlinear inertial coupling
torques (due to Coriolis and/or centrifugal accelerations), D is a vector of dissipative velocity-dependent
torques (e.g., due to friction), Ta is a vector of actuator torques, and Te a vector of environmental torques.
The target behavior is impedance; if the behavior of a spring with stiffness matrix K j and a damper with

8The term nodic refers to “transportable” behavior that may be defined relative to a nonstationary (or even acceler-
ating) reference frame. Nodicity is discussed by Hogan (1985) and Won and Hogan (1996).
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damping matrix B j is chosen, the control law is simply

Ta (�, �̇) = K j (�o − �) + B j (�̇o − �̇) (19.9)

where �o is a virtual trajectory in robot joint space. Combining the controller impedance (Equation 19.9)
with the robot dynamics (Equation 19.8), the result is as follows:

I (�)�̈ + C (�, �̇) + D(�̇) + BJ �̇ + K j � = BJ �̇o + K j �o + Te (19.10)

This controller implements in robot joint space a dynamic behavior analogous to that depicted in
Figure 19.12; the controller spring and damper serve to push or pull the robot pose toward that spec-
ified by the virtual trajectory.

Due to the nonlinear kinematics of a typical robot, constant stiffness and damping matrices in the
control law of Equation (19.9) result in stiffness and damping apparent at the robot’s end-effector (the usual
interaction port) that vary with the robot’s pose. However, a straightforward extension of Equation (19.9)
may be defined to control end-effector impedance, using the robot’s kinematic transformations to express
a desired end-effector impedance in robot joint space. The required transformations are the forward
kinematic equations, denoted X = L (�), relating robot pose to end-effector position (and orientation),
X ; the pose-dependent Jacobian of this transformation, denoted Ẋ = J (�)�̇, relating robot velocity (e.g.,
joint rates) to end-effector velocity (and angular velocity); and the transformation relating end-effector
forces (and torques), Fe , to actuator torques. For the common arrangement in which each robot actuator
acts independently on a robot joint variable, the required transformation is the transpose of the Jacobian:
Ta = J t (�)Fe . To achieve a target impedance with constant end-effector stiffness K and damping B , the
control law is as follows:

Ta (xo , ẋo , �, �̇) = J t (K (xo − L (�)) + B(ẋo − J (�)�̇)) (19.11)

This is a nonlinear counterpart of the control law in Equation (19.9). An important point is that all of the
required nonlinear transformations are guaranteed to be well-defined throughout the robot workspace —
even where the Jacobian loses rank.9 Thus the simple impedance controller can operate near or at the
robot’s kinematic singularities.

Note that the simple impedance controller does not rely on force feedback and does not require a force
sensor. If the forces due to the robot’s inertia and friction are sufficiently small, the robot’s interaction port
behavior will be close to the desired impedance. Inertial forces decline for slower movements and vanish
if the robot is at a fixed pose. As a result a simple impedance controller can be quite effective in some
applications. Frictional forces may also decline for slower movements but, especially due to dry friction,
need not vanish when the robot stops moving. This is one reason why, for applications requiring low
impedance, low inertia and friction are desirable in the design of interactive robots.

From a controller design viewpoint, the simple impedance control law of Equation (19.9) closely
resembles a PD motion controller acting on the error between actual and virtual trajectory in joint space.
Given the assumptions outlined above (a robot modeled as a mass driven by controllable forces) the
impedance controller stiffness K and damping B correspond, respectively, to proportional and derivative
gains. The nonlinear simple impedance controller of Equation (19.11) resembles a gain-scheduled PD
motion controller in which the nonlinear transformations adjust the proportional and derivative gains to
achieve constant end-effector behavior.

9The term joint space refers to a set of generalized coordinates of the robot mechanism, which uniquely define the
configuration of the robot and hence the position and orientation of any interaction port. Similarly any force and
torque applied to the interaction port can be projected to determine the corresponding forces and torques on the
actuators.
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The simple impedance controller has another important feature. Insofar as the controller exactly mimics
the behavior of a spring and damper, the robot behaves exactly as it would with a real spring and damper
connecting it to the virtual trajectory. If the virtual trajectory specifies a constant pose, the entire system
(robot plus controller) is passive and, therefore, guarantees stable interaction with all passive environments.
Regardless of the actual robot mass, damping, and controller gains, coupled instability is completely
eliminated. In fact, this is true even if the interaction occurs at points other than the end-effector, whether
inadvertently or deliberately (e.g., consider using an elbow or other body part to manipulate) (Hogan,
1988). In addition, because the simple impedance controller does not rely on force feedback control to
shape impedance, it is not vulnerable to the loss of passivity that can occur when structural modes interact
with a force feedback loop (as illustrated in Example 19.2).

Thus, although it is primitive, a simple impedance controller goes a long way toward solving the
stability problem, and its performance gets better as the inherent robot impedance is reduced. In practice,
though this implementation performs well in some applications, it has limitations. Several factors make
the controller impedance nonpassive, including discrete-time controller implementation and unmodeled
dynamics between actuator and sensor. Under these conditions stability cannot be guaranteed with all
environments. At the same time, the creation of low-impedance hardware can be difficult, particularly for
complex geometries. Still, the approach has been quite successful, particularly when used in conjunction
with highly back-drivable designs (for example, using robots for physiotherapy (Volpe et al., 2000)).
Feedback methods to reduce intrinsic robot impedance are discussed below.

19.4.3 Direct Impedance Modulation

A complementary approach to implementing interaction control without relying on feedback is to modu-
late impedance directly. For example, as discussed below, feedback control of interaction-port inertia can
be especially challenging. However, apparent inertia is readily modulated by taking advantage of kinematic
redundancies in the robot mechanism. Using the human musculo-skeletal system as an example, all as-
pects of mechanical impedance, including inertia, may be varied by using different body segments as the
interaction port (e.g., the hand vs. the foot) and/or by varying the pose of the rest of the musculo-skeletal
system. For example, with the phalanges partially flexed the fingertips present extremely low mechanical
impedance to their environment, while with the elbow fully extended, the arm presents a high impedance
along the line joining hand to shoulder.

An alternative way to modulate mechanical impedance is by taking advantage of actuator redundancies.
Because muscles pull and don’t push they are generally arranged in opposition about the joints so that
both positive and negative torques may be generated. Consequently, the number of muscles substantially
exceeds the number of skeletal degrees of freedom. Interestingly, the force developed by mammalian muscle
varies with muscle length and its rate of change, giving it mechanical impedance similar to a damped
spring, and this mechanical impedance increases with muscle activation. While the torque contributions
of different muscles may counteract each other, impedance contributions of muscles always add to the joint
impedance (Hogan, 1990). As a result, mechanical impedance about a joint may be directly modulated
without adjusting pose by simultaneous contraction of opposing muscles. For example, a “firm grip” on a
tool handle may be achieved by squeezing it. That requires simultaneous activation of opposing muscles
(at least in the hand and forearm but likely throughout the upper arm) which can be done without altering
the net force and/or torque on the tool, changing only the mechanical impedance of the hand where it
interacts with the tool and, in turn, stabilizing the pose of the tool relative to the hand.

The human ability to modulate neuromuscular mechanical impedance at will by co-contracting muscles
is readily observed, and human control of mechanical impedance appears to be quite sophisticated and
selective. For example, recent experimental results (Burdet et al., 2001) have shown that human subjects
making point-to-point movements holding the handle of a planar robot that presented a stabilizing
impedance along the direction of motion and a destabilizing impedance in the normal direction increased
their arm impedance preferentially along the normal but not the tangent.
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A similar approach to direct modulation of actuator impedance may be implemented in robotic systems.
There are many ways this may be accomplished. For example, a closed volume of air in a pneumatic actuator
acts as a spring; because of the nonlinear relation between air pressure and volume or due to a change
of shape, increasing pressure increases the apparent stiffness. Fluid flowing through a passage (e.g., in a
hydraulic actuator) dissipates energy, and varying the geometry of the passage changes the apparent damp-
ing (Kleidon, 1983). Alternatively, field-responsive fluids (e.g., electro-rheologic or magneto-rheologic)
permit variation of viscous damping without changing geometry and have been used in automotive ap-
plications (Carlson et al., 1999). Changing excitation current and hence magnetic field strength in an
electromagnetic actuator (e.g., a rotary or linear solenoid) may be used to change both apparent stiffness
and damping, and electromechanical actuator designs that provide for direct modulation of impedance
have been proposed (Fasse et al., 1994).

To the best of our knowledge, actuators with directly-modulated impedance have yet to see widespread
applications in robotics. However, the development of new actuator technologies to serve as “artificial
muscles” is presently a topic of active research, and new applications may emerge from this work.

19.5 Improving Low-Impedance Performance

A large class of applications, including robots that interact with humans, demands interactive robots with
low mechanical impedance. The most direct approach is to design low-impedance hardware and use a
simple impedance control algorithm; in fact, this is the recommended approach. However, intrinsically
low-impedance hardware can be difficult to create, particularly with complex geometries and large force
or power outputs. Most robotic devices have intrinsically high friction and/or inertia, and the simple
impedance control technique described above does nothing to compensate for intrinsic robot impedance.
Considerable effort has been devoted to designing controllers to reduce the apparent endpoint impedance
of interactive robots.

19.5.1 Force Feedback

Force feedback is probably the most appealing approach for reducing apparent impedance. If a simple
impedance controller is applied to a one-dimensional inertial mass as in Figure 19.1, that is also subject to
some nonlinear friction force Fn(x , ẋ), and is augmented with a proportional force feedback controller,
the control law is given by Equation (19.6), repeated here for convenience.

Fa = K (r − x) + B(ṙ − ẋ) + K f [Fe + K (r − x) + B(ṙ − ẋ)] (19.12)

K and B are the scalar desired stiffness and damping, respectively, and r now represents the virtual
position.10 The force feedback term serves to minimize the deviation of the actual endpoint force from
the desired endpoint force, which looks like a damped spring characterized by K and B connected to the
virtual trajectory. The equation of motion for the uncontrolled system with nonlinear friction is

mẍ + bẋ + Fn(x , ẋ) = Fa + Fe (19.13)

Combining Equation (19.12) and Equation (19.13), the controlled equation of motion is as follows:

m

1 + K f
ẍ + b

1 + K f
ẋ + Fn(x , ẋ)

1 + K f
+ K (x − r ) + B(ẋ − ṙ ) = Fe (19.14)

10As outlined above, given the assumed robot model, a simple impedance controller closely resembles a PD motion
controller. In Equation (19.6) and Equation (19.14) the corresponding proportional and derivative gains are K (1+K f )
and B(1 + K f ), respectively. This form is chosen so that force feedback does not change the stiffness and damping
introduced by the controller.
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FIGURE 19.13 Equivalent physical system for a single-resonance model under force feedback control. (Modified
from Colgate, J.E., The control of dynamically interacting systems, Ph.D. thesis, Massachusetts Institute of Technology,
1988, with permission.)

Equation (19.14) shows that the introduction of proportional force feedback reduces the apparent mass
and friction by a factor of the force feedback gain plus one, so that (in principle) arbitrarily large force
gains drive the actual impedance to the desired impedance specified by the controller. Friction, inertia, or
any other behavior, whether linear or nonlinear, is minimized.

This one-degree-of-freedom combination of force and motion feedback is readily extended to multiple
degrees of freedom. Assuming the robot may be modeled as a multi-degree-of-freedom inertial mechanism,
retarded by friction and subject to actuator and environmental forces (as in Equation (19.8) above), a
controller based on feedback of endpoint position, velocity, and force can be formulated to replace the
manipulator’s inherent dynamics with arbitrary inertia, stiffness, and damping (Hogan, 1985).

Despite its appeal, this approach has fundamental limitations. Clearly, the largest possible force feedback
gain is desirable to minimize unwanted components of intrinsic robot behavior, e.g., due to nonlinear
friction. However, experienced control system designers intuit that increasing gains toward infinity almost
always leads to instability, and the following observation shows why this holds true in the case of force
feedback. Colgate has derived a physical equivalent representation of force feedback. A physical equivalent
representation is a model of a mechanical system that exactly replicates the behavior of a system under
feedback control. Figure 19.13 shows a physical equivalent representation for a model of a robot with a
single structural vibration mode (as shown in Figure 19.2 but with b1 = b2 = 0, m1 = m2 = m/2) under
force feedback control (Equation (19.12) with K = B = 0). It also exhibits a single structural mode
but with parameters that depend on the force feedback gain. The result has negative stiffness, mass, and
damping parameters for any force feedback gain greater than 1 (Colgate, 1988). Because endpoint force
feedback is not state feedback, isolated stability is unaffected; this system remains neutrally stable as long as
the interaction force Fe is zero. However, for K f > 1, it is not passive; it can exhibit negative visco-elastic
behavior upon contact, resulting in coupled instability. Note that this gain limit is independent of the
value of the structural stiffness and damping. As any real robot almost inevitably exhibits resonance, this
analysis shows that any system under force feedback becomes nonpassive for a force feedback loop gain
greater than unity and is, therefore, vulnerable to coupled instability.

19.5.2 Natural Admittance Control

One effective solution to the loss of passivity due to force feedback is natural admittance control (NAC)
developed by Newman (1992). In essence, this approach is based on the observation that a system under
force feedback becomes nonpassive when the controller reduces the apparent inertia (to less than about
half its physical value), but passivity is not compromised by the elimination of friction. Natural admittance
control specifies a desired inertia that is close to that of the physical system (the “natural admittance”) and
focuses on reducing friction as much as possible, preserving passivity.

A method for the design of natural admittance controllers is detailed in Newman (1992). Here the
procedure is sketched for the simple robot model shown in Figure 19.1 consisting of a single mass retarded
by friction and driven by actuator and environmental forces. The system might also have nonlinear friction
that the NAC seeks to eliminate, that need not be modeled at all in the design of the compensator; the
controller treats such friction as a disturbance from desired port behavior and rejects it. To ease notation,
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the substitutions v = va = ẋ = ve are made. The equation of motion for the system velocity neglecting
nonlinear friction is

mv̇ + bv = Fa + Fe (19.15)

In the Laplace domain:

v = 1

ms + b
(Fa + Fe ) (19.16)

A generic form for the controller is assumed, that incorporates some velocity feedback with compensator
G v (s) and endpoint force feedback with some compensator G f (s):

Fa = G v v + G f Fe (19.17)

Using Equation (19.16) and Equation (19.17) the actual endpoint admittance Y (s ) = v/Fe is determined:

Y (s ) = G f + 1

ms + b − G v
(19.18)

This is equated to the target port admittance. The target stiffness K and damping B are chosen at will but
the target mass is equal to the physical mass m of the system:

Y (s ) = Ydes(s ) = 1

ms + B + K /s
(19.19)

Equation (19.18) and Equation (19.19) can be solved for G f in terms of G v :

G f = (b − G v − B)s − K

ms 2 + Bs + K
(19.20)

A simple form for G v can be assumed, such as a constant, and the compensator design is complete.
Equation (19.20) may be thought of as a force feedback “filter” that yields the desired admittance of
Equation (19.19). Although the mass is not reduced, the “disturbance” to the desired behavior due to
friction, b, is rejected with the feedback gain of the compensator, and its effect is smaller as the velocity
loop gain, G v , is increased. The approach serves equally well to minimize disturbances due to nonlinear
frictional forces, e.g., dry friction.11

In principle, the controlled system is passive even if the velocity gain is increased to arbitrary size,
minimizing the unwanted frictional effects. In practice unmodeled dynamic effects limit the gain that may
be used without compromising passivity, but the technique affords significant practical improvement over
simple proportional force feedback. A more general formulation and discussion of the method can be
found in Newman (1992) and Newman and Zhang (1994).

19.5.3 Series Dynamics

An alternative approach to stabilizing interaction under force feedback is to place compliant and/or viscous
elements in series between a manipulator and its environment. Variants of this approach have been used
since the earliest attempts at robot force control (Whitney, 1977), e.g., in the form of compliant pads on
the robot end-effector. A drawback is that this may compromise fine motion control. More recently a series
spring has been incorporated within force control actuators to facilitate force feedback and absorb impacts
(Pratt and Williamson, 1995). The following example illustrates the beneficial effect of series dynamic
elements.

11The Laplace domain representation above was used to simplify the presentation and is not essential.
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FIGURE 19.14 Stable and unstable parameter values for spring-and-mass environment coupled to the system of
Example 19.2. The coupled system is stable when parameters fall in the region above the line and unstable when they
fall in the region below the line.
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FIGURE 19.15 The single-resonance model of Figure 19.2 with a spring and mass interposed in series between
interaction port and environment.

Example 19.5

A series spring’s stabilizing effect on a force-controlled system can be illustrated by considering again
the simple model of a robot with a single structural vibration mode shown in Figure 19.2. Under the
control law of Equation (19.6) or Equation (19.12), this system may have a nonpassive impedance and be
destabilized by interaction with some environments. However, it remains stable when interacting with a
broad range of spring and mass environments,12 as depicted by the stability boundary in Figure 19.14. In
this particular example, high-stiffness springs are destabilizing while masses are stabilizing. If a spring and
mass are placed in series between the interaction port and the environment, as depicted by ks and ms in
Figure 19.15, the apparent stiffness that the controlled system experiences cannot exceed ks . By appropriate

12Recall that the set of all positive springs and masses includes the most destabilizing passive environments a robot
may encounter.
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FIGURE 19.16 The single-resonance model of Figure 19.2 with a parallel spring and damper interposed in series
between interaction port and environment.

choice of ks the resulting interaction port impedance is made passive, stabilizing the interaction. In effect, a
piece of the controller’s “environment” is carried around with the robot, acting to “filter” the environment
dynamics to ensure that the controller cannot encounter any environment capable of destabilizing it.

The implementation of “series elastic actuators” (Pratt and Williamson, 1995) also includes an inertia
ms between ks and the environment, endowing the controller’s environment with not only a maximum
stiffness but also a minimum inertia, further stabilizing the system. Considering Figure 19.15, the stiffness
ks and inertia ms may be chosen so that the uncoupled robot behavior corresponds to a point in the
stable region. Assuming interaction with passive environments, the interaction port is then guaranteed
to encounter only environments that reside above and to the left of this point, thereby ensuring coupled
stability.

Although the method described above can guarantee stability for certain types of nonpassive systems,
it lacks the generality to be applicable to all nonpassive systems. Dohring and Newman have provided
a formalization that includes damping to drain the energy introduced by nonpassive behavior of the
controller or the environment (Dohring and Newman, 2002). The recommended approach includes a
parallel spring and damper in series with the environment, as shown in Figure 19.16. Analysis of passivity
of the admittance function at the interaction port dictates the selection of the spring and damper values. By
modeling the parallel spring and damper as a two-port, the admittance at the outboard side of the spring
and damper, Y (s ), is computed in terms of the original robot admittance, Yo(s ), and the series elements:

Y (s ) = Yo(s ) + s

bs s + ks
(19.21)

A small series damper bs contributes a large positive-real term to the net admittance at high frequencies,
compensating for negative-real, nonpassive behavior in Yo(s ). The spring determines the frequency range
at which the damping dominates. Together they can be selected to make Y (s ) passive.

Intentional series dynamics can be thought of as “mechanical filters,” perhaps loosely analogous to
anti-aliasing filters used with analog-to-digital converters, that attenuate undesirable effects in peripheral
frequency ranges that make the system vulnerable to coupled instability, while preserving desired dynamic
behavior in the frequency range of interest. As with signal filters, something is lost; here, it might be
bandwidth or positioning accuracy, a tradeoff that may be acceptable for interactive robots.

19.6 More Advanced Methods

The foregoing considered some of the basic approaches to interaction control. Alternative and more
advanced techniques and applications have been developed. The following is a small sample of this extensive
work.

Nonlinear approaches to impedance control have been pursued with success, including adaptive (Singh
and Popa, 1995), learning (Cheah and Wang, 1998), robust sliding-mode (Ha et al., 2000), and decentralized
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control (Kosuge et al., 1997) methods. Stability properties of different implementations of impedance
control have been investigated by Lawrence (1988). An alternative approach to design for coupled stability
based on the small-gain theorem has been pursued by Kazerooni et al. (1990). More powerful methods to
guarantee stable interaction have been studied in depth by Miller et al. (2000).

For spatial rotations and translations, the specification of task-relevant impedance (and especially stiff-
ness) is particularly challenging. By characterizing impedance using a “spatially affine” family of compliance
and damping, Fasse and Broenink (1997) develop a method that substantially simplifies specification and
implementation of spatial impedance. A quaternion representation of rotational impedance is presented
by Caccavale et al. (1999).

19.7 Conclusion: Interaction Control, Force Control,
and Motion Control

The fundamental goal of the interaction controllers described in this chapter is to minimize deviations
from some specified ideal of a system’s dynamic response to inputs at its ports of interaction. In a sense,
both motion and force controllers attempt the same task, though each focuses on only one port variable
in particular. A system with zero admittance, or infinite impedance, gives zero motion in response to any
applied force. In other words, it imposes motion and its motion is unaffected by any applied force. This
ideal is the goal of a purely motion-controlled manipulator. Conversely, the force applied by a system with
zero impedance, or infinite admittance, has zero dependence on motion at its interaction port. In other
words, it is the ideal of a pure force controller. Those designing motion or force controllers in effect decide
to forego a guarantee of interaction stability in favor of maximizing or minimizing port impedance. This
may be appropriate for applications in which the work exchanged between the robot and its environment
is negligible. For applications where power exchange cannot be ignored, interaction control provides
techniques to accommodate its effects.
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